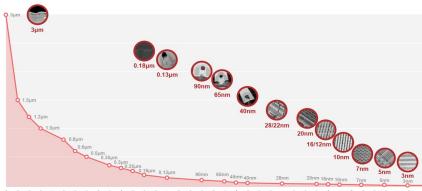
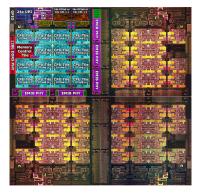
ECE 2300 Digital Logic and Computer Organization Fall 2024

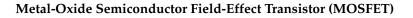
Topic 1: Digital Circuits

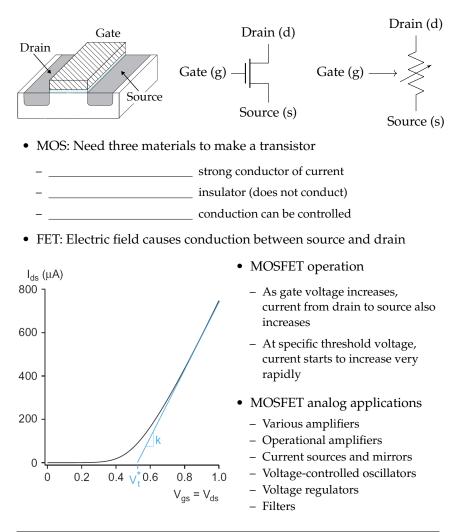
School of Electrical and Computer Engineering Cornell University

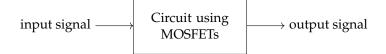

revision: 2024-08-29-04-05

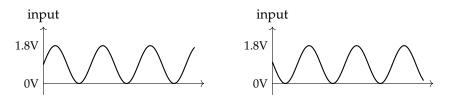
1	Analog View of a Transistor												
2	Digital View of a Transistor	5											
	2.1. Binary Digital Abstraction	. 5											
	2.2. Switch-Level Model for a Transistor	. 6											
	2.3. Transistor Networks	. 8											
3	CMOS Inverter	10											
4	Simple Digital CMOS Circuits												
	4.1. Rules for Digital CMOS Circuits	. 15											
5	More Complex Digital CMOS Circuits	16											
	5.1. Multi-Input Digital Circuits	. 16											
	5.2. Multi-Stage Digital Circuits	. 18											
6	Summary of Abstractions	19											


Copyright © 2024 Christopher Batten. All rights reserved. This handout was prepared by Prof. Christopher Batten at Cornell University for ECE 2300 / ENGRD 2300 Digital Logic and Computer Organization. Download and use of this handout is permitted for individual educational non-commercial purposes only. Redistribution either in part or in whole via both commercial or non-commercial means requires written permission.

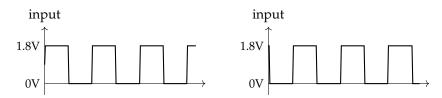

1. Analog View of a Transistor


- **Transistors:** Invented by John Bardeen, Walter Brattain, and William Shockley at Bell Labs in 1947
- **Integrated Circuits:** Independently developed by Jack Kilby (at TI) and Robert Noyce (at Fairchild) in the 1950s; Noyce and Gordon Moore founded Intel in 1968

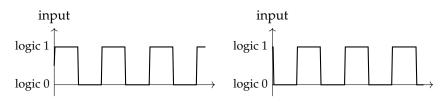

- Intel Saphire Rapids (2023)
 - Number of transistors: 61 billion
 - Technology node: Intel 7



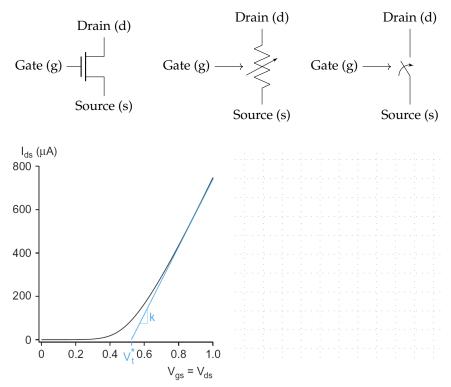
2. Digital View of a Transistor



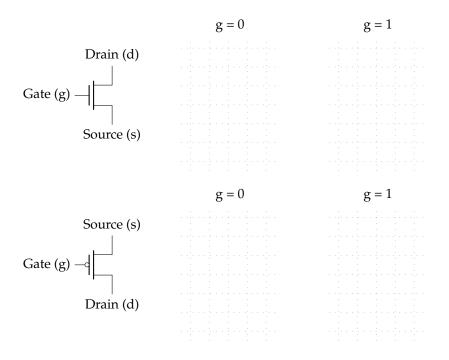
2.1. Binary Digital Abstraction


Analog circuits (continuous values are possible)

Binary digital circuits (only two specific values are possible)

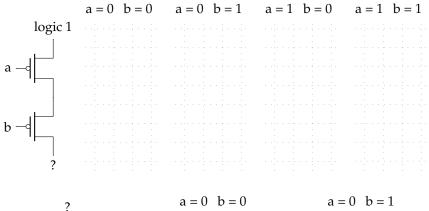


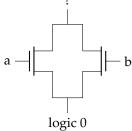
Abstract low voltage as "logic 0" and high voltage as "logic 1"



2.2. Switch-Level Model for a Transistor

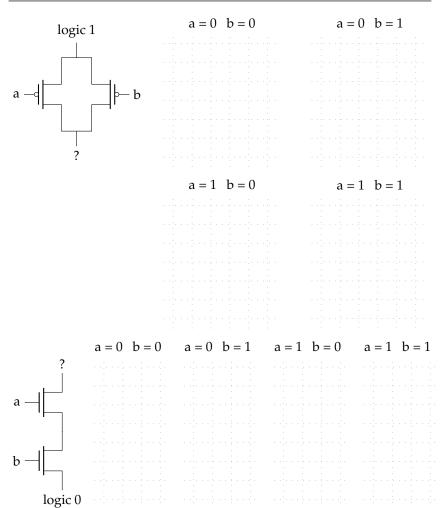
- Non-linear change in current make transistors act like switches
 - If g = 0, then the switch is open
 - If g = 1, then the switch is closed

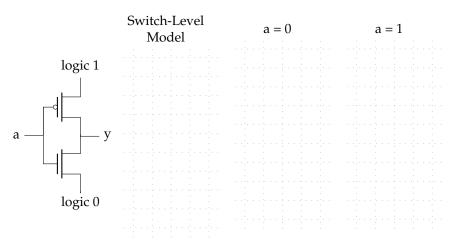



- Two different kinds of MOSFETs
 - **NMOS:** Closed when g = 1, open when g = 0, better at passing 0
 - **PMOS:** Closed when g = 0, open when g = 1, better at passing 1

- NMOS and PMOS have complementary properties
 - For same input, one will be on and one will be off
 - Digital CMOS circuits combine NMOS and PMOS transistors

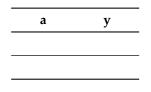
2.3. Transistor Networks


$a = 1 \quad b = 0$



			,						
			٠						

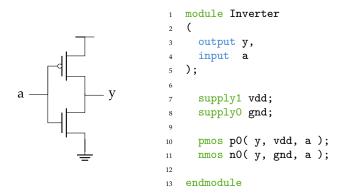
$a = 1 \ b = 1$



3. CMOS Inverter

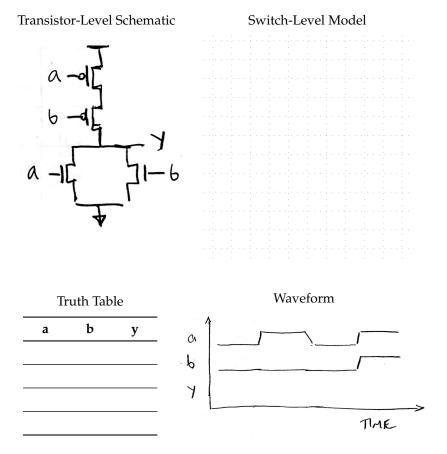
Truth Table

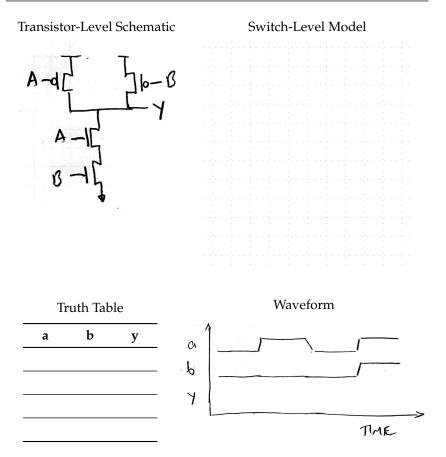
- Rows for all possible input values
- Specifies output for to given input values

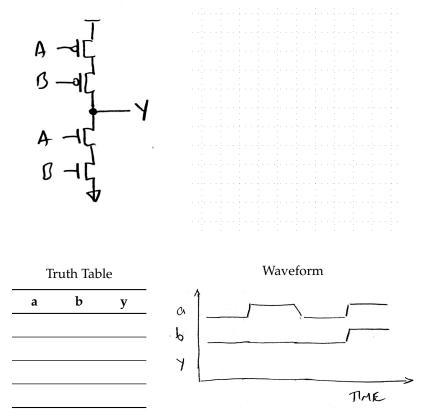


Waveform

- Illustrates how outputs change over time for given input signals
- Various delay models are possible


Switch-Level Modeling in Verilog


- supply1 is used to create a "logic 1" power supply
- supply0 is used to create a "logic 0" ground
- pmos(drain, source, gate) instantiates a PMOS transistor
- nnmos(drain, source, gate) instantiates a PMOS transistor
- module/endmodule used to define a hardware module along with the corresponding input and output ports


https://www.edaplayground.com/x/LbpL

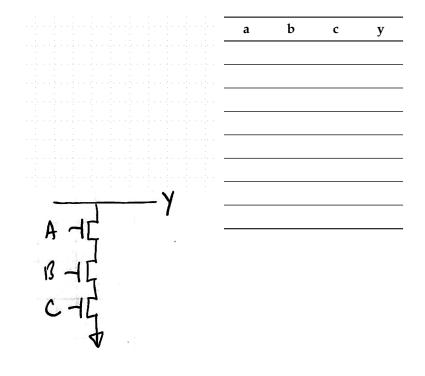
4. Simple Digital CMOS Circuits

https://www.edaplayground.com/x/wHkB



Switch-Level Model

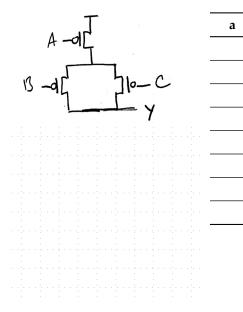
Transistor-Level Schematic

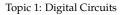

4.1. Rules for Digital CMOS Circuits

- Use NMOS and PMOS transistors such that:
 - There should never be a direct path from Vdd to ground
 - The output should never be floating
- Circuit is divided into two parts:
 - Pull-up network exclusively uses PMOS transistors
 - Pull-down network exclusively uses NMOS transistors
- The pull-up and pull-down networks are duals of each other
 - Two transistors in series in the pull-down network will be in parallel in the pull-up network
 - Two transistors in parallel in the pull-down network will be in series in the pull-up network
 - Apply these rules hierarchically to subnets
- There should always be an equal number of PMOS and NMOS transistors

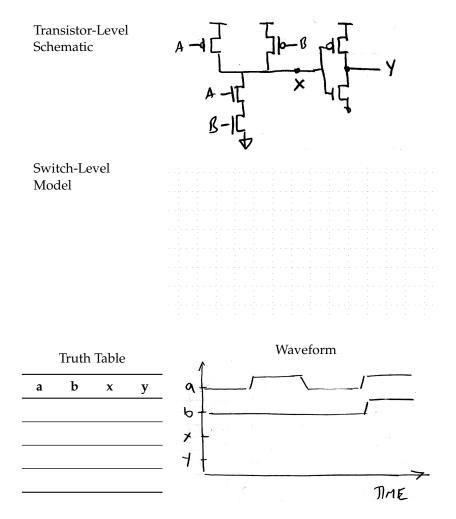
5. More Complex Digital CMOS Circuits

5.1. Multi-Input Digital Circuits

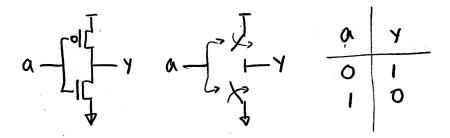



С

y


b

Finish the circuit using the rules for digital CMOS circuits, then fill in the truth table.



5.2. Multi-Stage Digital Circuits

6. Summary of Abstractions

