ECE 2300 Digital Logic and Computer Organization Fall 2024

Topic 3: Boolean Equations

School of Electrical and Computer Engineering Cornell University

revision: 2024-09-10-10-35

1	From Logic Gates to Boolean Equations	3
	1.1. Writing Boolean Equations in Verilog	5
2	From Truth Tables to Boolean Equations	6
	2.1. Sum-of-Products Canonical Form	6
	2.2. Product-of-Sums Canonical Form	7
	2.3. Using Canonical Forms in Verilog	8
3	Boolean Algebra	10
	3.1. Boolean Axioms, Theorems, and Proofs	10
	3.2. Simplifying with Boolean Algebra	13
	3.3. Simplifying with Karnaugh Maps	15
4	From Boolean Equations to Logic Gates	18
5	From Boolean Equations to Transistor Schematics	21
6	Summary of Abstractions	22

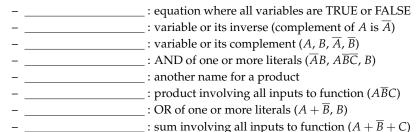
Applications
Algorithms
Prog Lang & Compilers
Operating Systems
Architecture
Microarchitecture
Digital Logic
Digital Circuits
Analog Circuits
Devices
Technology

Boolean Equations
Logic Gates
Truth Tables
Switch-Level Models
Transistor Schematics

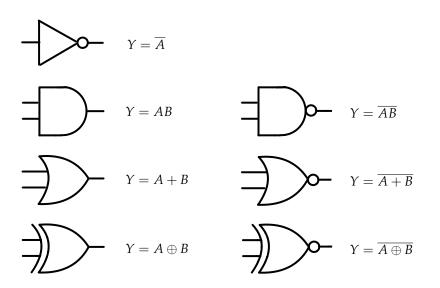
Copyright © 2024 Christopher Batten. All rights reserved. This handout was prepared by Prof. Christopher Batten at Cornell University for ECE 2300 / ENGRD 2300 Digital Logic and Computer Organization. Download and use of this handout is permitted for individual educational non-commercial purposes only. Redistribution either in part or in whole via both commercial or non-commercial means requires written permission.

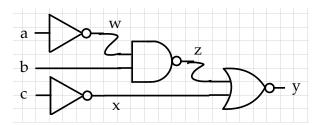
1. From Logic Gates to Boolean Equations

Start by defining some terminology

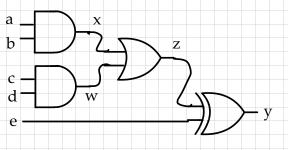


- We can represent our primitive logic gates as Boolean equations
 - Higher level of abstraction makes it easier to understand, manipulate, and optimize gate-level networks





Corresponding Boolean equation



Corresponding Boolean equation

1.1. Writing Boolean Equations in Verilog

```
Y = \overline{A}
NOT
                      assign Y = ~A;
AND Y = AB
                      assign Y = A & B;
NAND Y = \overline{AB} assign Y = ^{(A \& B)};
OR Y = A + B assign Y = A | B;
NOR Y = \overline{A + B} assign Y = ^{(A \mid B)};
XOR Y = A \oplus B assign Y = A ^ B;
XNOR Y = \overline{A \oplus B} assign Y = ^(A ^ B);
                        1 module BooleanEqEx1
   W = \overline{A}
                        2 (
                        3 input wire a,
    Z = \overline{W}
                       4 input wire b,
    X = \overline{C}
                        5 input wire c,
                        6 output wire y
    Y = \overline{Z + X}
                        7);
                         wire w;
                           wire x;
                       10
                           wire z;
                       11
                           assign w = ~a;
                       13
                           assign z = (w \& b);
                           assign x = c;
                           assign y = (z \mid x);
                           // assign y = ~( ~( ~a & b ) | ~c )
                       18
                       20 endmodule
```

2. From Truth Tables to Boolean Equations

- Truth table for N inputs has 2^N rows, one for every possible set of input values
- We can systematically transform any truth table into a corresponding Boolean equation

2.1. Sum-of-Products Canonical Form

- Each row in the truth table is associated with a minterm
- We can write a Boolean equation for any truth table as the OR of the minterms for which the output is TRUE
- Called sum-of-products (SOP) canonical form

	A	В	Υ	minterm	name
•	0	1	0	$\overline{A} \overline{B}$	m_0
•	0	1	1	$\overline{A} B$	m_1
•	1	0	0	$A \overline{B}$	m_2
•	1	1	0	A B	m_3

В	Υ	minterm	name
1	0	$\overline{A} \overline{B}$	m_0
1	1	$\overline{A} B$	m_1
0	0	$A \overline{B}$	m_2
1	1	A B	m_3
	1 1	1 0	$ \begin{array}{cccc} 1 & 0 & \overline{A}\overline{B} \\ 1 & 1 & \overline{A}B \\ 0 & 0 & A\overline{B} \end{array} $

`	_	U	11	1	e	5	Ρ	'(ונ	. L	u	1.	LI	3	ó	L	,,	יט	U	14	=	1.	LI	•	=	4	·	LC	11	L	U	11
								•													,											

Corresponding Roolean aquation

Cc	rr	es	sp	C	n	dı	n	ıg	Ė	60)()l(e	11	1	e	q	ua	ıt	1C	n

2.2. Product-of-Sums Canonical Form

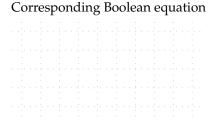
- We can write a Boolean equation for any truth table as the AND of the maxterms for which the output is FALSE minterms for which the output is TRUE
- Called product-of-sums (POS) canonical form

\overline{A}	В	Υ	maxterm	name
0	1	1	A + B	M_0
0	1	0	$A + \overline{B}$	M_1
1	0	1	$\overline{A} + B$	M_2
1	1	1	$\overline{A} + \overline{B}$	M_3

`	 11	υ.	۲	•	'1	٠,	u	 •	6	-	 ,	_	٠,	٠,	-	 •	•	1	ш	•	.1	_	11

Corresponding Boolean equation

A	L E	3 Y	maxterm	name
0	1	. 0	A + B	M_0
0	1	. 1	$A + \overline{B}$	M_1
1	C	0	$\overline{A} + B$	M_2
1	1	. 1	$\overline{A} + \overline{B}$	M_3



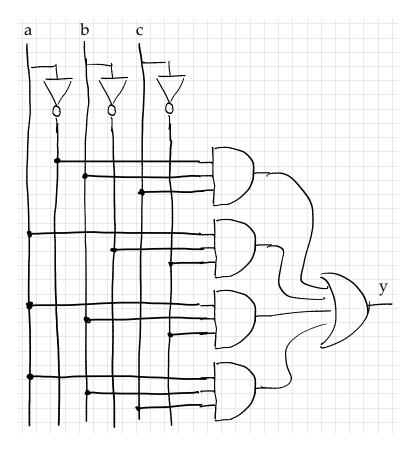
2.3. Using Canonical Forms in Verilog

- Let's revisit a truth table from the previous topic
- Create a wire for every minterm
- Assign output as the OR of every minterm for which output is TRUE

a	b	c	y			
0	0	0	0			
0	0	1	0			
0	1	0	0			
0	1	1	1			
1	0	0	1			
1	0	1	0			
1	1	0	1			
1	1	1	1			

```
1 module SumOfProductsEx
3 input wire a,
   input wire b,
    input wire c,
    output wire y
7);
    assign min0 = ~a & ~b & ~c;
    assign min1 = ~a & ~b & c;
    assign min2 = ~a & b & ~c;
    assign min3 = ~a & b & c;
    assign min4 = a & ~b & ~c;
    assign min5 = a & ~b & c;
15
    assign min6 = a & b & ~c;
    assign min7 = a & b & c;
17
18
    assign y = min3 | min4 | min6 | min7;
20
21 endmodule
```

Corresponding Boolean equation



3. Boolean Algebra

- Algebra enables logically manipulating mathematical equestions
- Boolean algebra enables logically manipulating Boolean equestions

3.1. Boolean Axioms, Theorems, and Proofs

• The five axioms of Boolean algebra and their duals define Boolean variables and meaning of NOT, AND, OR

Number	Axiom	Dual	Name
A1	B = 0 if B ≠ 1	B = 1 if B ≠ 0	Binary Field
A2	0 = 1	<u>1</u> = 0	NOT
A3	0 • 0 = 0	1 + 1 = 1	AND/OR
A4	1 • 1 = 1	0 + 0 = 0	AND/OR
A5	0 • 1 = 1 • 0 = 0	1+0=0+1=1	AND/OR

 Following theorems describe how to simplify equations involving one variable

Number	Theorem	Dual	Name
T1	B • 1 = B	B + 0 = B	Identity
T2	B • 0 = 0	B + 1 = 1	Null Element
T3	B • B = B	B + B = B	Idempotency
T4	■ =	= B	Involution
T5	$B \bullet \overline{B} = 0$	$B + \overline{B} = 1$	Complements

 Following theorems describe how to simplify equations involving more than one variable

#	Theorem	Dual	Name
Т6	B•C = C•B	B+C = C+B	Commutativity
T7	(B•C) • D = B • (C•D)	(B + C) + D = B + (C + D)	Associativity
T8	$B \bullet (C + D) = (B \bullet C) + (B \bullet D)$	B + (C•D) = (B+C) (B+D)	Distributivity
Т9	B • (B+C) = B	B + (B•C) = B	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	(B+C) • (B+C) = B	Combining
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D) =$ $(B \bullet C) + (\overline{B} \bullet D)$	$(B+C) \bullet (\overline{B}+D) \bullet (C+D) =$ $(B+C) \bullet (\overline{B}+D)$	Consensus
T12	<u>B•C•D</u> = <u>B</u> + <u>C</u> + <u>D</u>	B+C+D= B • C • D	De Morgan's

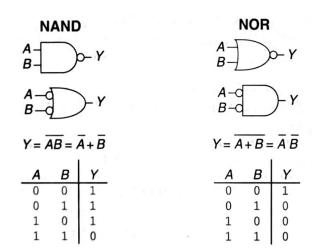
- Two methods to prove a theorem
 - Method 1: Perfect induction
 - Method 2: Use other theorems and axioms to make one side of the equation look like the other

T9:
$$B \bullet (B+C) = B$$

T10:
$$(B \bullet C) + (B \bullet \overline{C}) = B$$

De Morgan's Theorem

T12:
$$\overline{B_0 \bullet B_1 \bullet B_2 \dots} = \overline{B_0} + \overline{B_1} + \overline{B_2} \dots$$



Derive Product-of-Sum from Sum-of-Product

$$Y = \overline{A} \, \overline{B} + \overline{A} B$$

3.2. Simplifying with Boolean Algebra

$$Y = \overline{A}B + AB$$

$$Y = B$$

T10: Combining

$$Y = \overline{A}B + AB$$

$$Y = B(A + \overline{A})$$
 T8: Distributivity $Y = B(1)$ T5': Complements

$$Y = B$$

T1: Identity

$$Y = \overline{A}B\overline{C} + \overline{A}BC + ABC$$

Attempt #1

Attempt #2

3.3. Simplifying with Karnaugh Maps

• K-maps are a systematic way to simplify Boolean equations

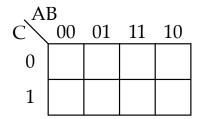
A	В	C	Y
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

$$Y = \overline{A}B\overline{C} + \overline{A}BC + ABC$$

$\langle A \rangle$	В			
$C\setminus$	00	01	11	10
0				
1				

A	В	C	Y
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

$$Y = \overline{A}\,\overline{B}\,\overline{C} + A\overline{B}\,\overline{C} + A\overline{B}C$$



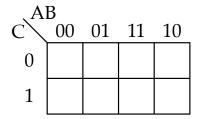
A	В	C	Y
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

$$Y = \overline{A}B\overline{C} + \overline{A}BC + A\overline{B}\overline{C} + AB\overline{C} + ABC$$

$\langle A \rangle$	В			
$C \setminus$	00	01	11	10
0				
1				

A	В	С	Y
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

$$Y = \overline{A}\,\overline{B}\,\overline{C} + \overline{A}\,\overline{B}C + A\overline{B}\,\overline{C} + A\overline{B}C + AB\overline{C}$$



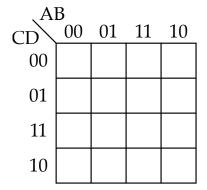
• Extending k-maps to equations of four variables

A	В	С	D	Y
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

$$Y = \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} + \overline{A} \, \overline{B} C \overline{D} + \overline{A} \, \overline{B} C D$$

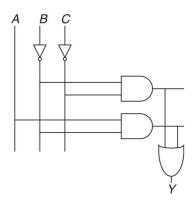
$$+ \overline{A} B \overline{C} D + \overline{A} B C \overline{D} + \overline{A} B C D$$

$$+ A \overline{B} \, \overline{C} \, \overline{D} + A \overline{B} \, \overline{C} D + A \overline{B} C \overline{D}$$

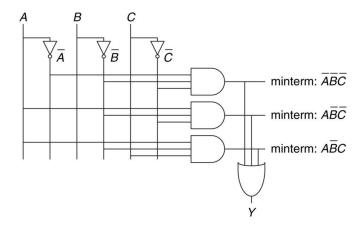


4. From Boolean Equations to Logic Gates

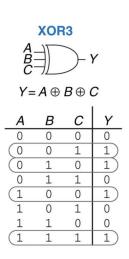
$$Y = \overline{B}\,\overline{C} + A\overline{B}$$

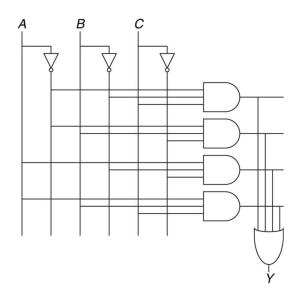


$$Y = \overline{A}\,\overline{B}\,\overline{C} + A\overline{B}\,\overline{C} + A\overline{B}C$$



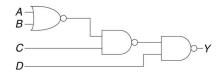
$$Y = \overline{A}\,\overline{B}C + \overline{A}B\overline{C} + A\overline{B}\,\overline{C} + ABC$$



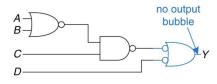


Bubble pushing

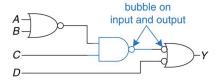
$$Y = \overline{(\overline{(\overline{A+B})C})D}$$



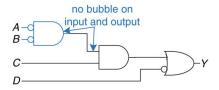
$$Y = \overline{\overline{(\overline{A+B})C}} + \overline{D}$$



$$Y = (\overline{A+B})C + \overline{D}$$

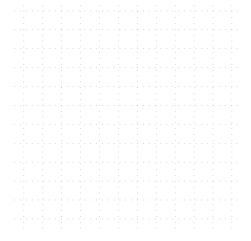


$$Y = \overline{A}\,\overline{B}C + \overline{D}$$



5. From Boolean Equations to Transistor Schematics

$$Y = \overline{AB + CD}$$



6. Summary of Abstractions

