ECE 2300 Digital Logic and Computer Organization Fall 2024

Topic 5: Number Systems

School of Electrical and Computer Engineering Cornell University

revision: 2024-09-24-11-00

1	Unsigned Binary Number System	3
2	Sign Magnitude Number System	5
3	Two's Complement Number System	7
4	Fixed Point Number System	10
5	Floating Point Number System	11

Copyright © 2024 Christopher Batten. All rights reserved. This handout was prepared by Prof. Christopher Batten at Cornell University for ECE 2300 / ENGRD 2300 Digital Logic and Computer Organization. Download and use of this handout is permitted for individual educational non-commercial purposes only. Redistribution either in part or in whole via both commercial or non-commercial means requires written permission.

1. Unsigned Binary Number System

$b_3b_2b_1b_0$ v	$v = b_3 \times 2^3 + b_2 \times 2^2 + b_1 \times 2^1 + b_0 \times 2^0$
0000	How do we represent $v = 13$?
0001	
0010	
0011	
0100	
0101	What does $b = 1010$ represent?
0110	
0111	
1000	
1001	
1010	How do we represent $v = 7$?
1011	
1100	
1101	
1110	
1111	What does $h = 1110$ represent?

Implement an addsub unit for unsigned binary numbers

2. Sign Magnitude Number System

$b_3 b_2 b_1 b_0$	υ	$v = -1^{b_3} imes (b_2 imes 2^2 + b_1 imes 2^1 + b_0 imes 2^0)$
0000		How do we represent $v = -5$?
0001		
0010		
0011		
0100		
0101		What does $b = 1100$ represent?
0110		
0111		
1000		
1001		
1010		How do we represent $v = -7$?
1011		
1100		
1101		
1110		
1111		What does $h = 0.101$ represent?

Complementing a signed magnitude number

• Simply invert the sign bit (i.e., the most significant bit)

Implement an addsub unit for signed magnitude numbers

3. Two's Complement Number System

$b_3b_2b_1b_0$ v	- $v = b_3 \times -(2^3) + b_2 \times 2^2 + b_1 \times 2^1 + b_0 \times 2^0$
0000	How do we represent $v = -4$?
0001	
0010	—
0011	
0100	
0101	What does $b = 1110$ represent?
0110	
0111	
1000	
1001	
1010	How do we represent $v = -1$?
1011	
1100	
1101	_
1110	
1111	- What does $b = 0101$ represent?

v_{bin}	$b_3b_2b_1b_0$	v_{2c}	$-v_{2c}$			
0	0000	0	0	0000	0	16-0 = 16
1	0001	1	-1	1111	15	16-1 = 15
2	0010	2	-2	1110	14	16-2 = 14
3	0011	3	-3	1101	13	16-3 = 13
4	0100	4	-4	1100	12	16-4 = 12
5	0101	5	-5	1011	11	16-5 = 11
6	0110	6	-6	1010	10	16-6 = 10
7	0111	7	-7	1001	9	16-7 = 9
8	1000	-8	-8	1000	8	16-8 = 8
9	1001	-7	7	0111	7	16-9 = 7
10	1010	-6	6	0110	6	16-10 = 6
11	1011	-5	5	0101	5	16-11 = 5
12	1100	-4	4	0100	4	16-12 = 4
13	1101	-3	3	0011	3	16-13 = 3
14	1110	-2	2	0010	2	16-14 = 2
15	1111	-1	1	0001	1	16-15 = 1

Complementing a two's complement number

- Two's complement of a 4-bit number v is $2^4 v$
- Implementing this in hardware requires 5-bit subtractor (maybe?)

Implement an addsub unit for two's complement numbers

		()							${\bf y}_{i+1}$									
									• •									

4. Fixed Point Number System

$b_3b_2b_1b_0$ v	$v = b_3 \times 2^1 + b_2 \times 2^0 + b_1 \times 2^{-1} + b_0 \times 2^{-2}$
0000	How do we represent $v = 1.5$?
0001	
0010	
0011	
0100	
0101	What does $b = 1011$ represent?
0110	
0111	
1000	
1001	
1010	How do we represent $v = 3.25$?
1011	
1100	
1101	
1110	
1111	How do we represent $v = 3.33$?

5. Floating Point Number System

$b_3 b_2 b_1 b_0$	υ	$v = 2^{(b_3 \times 2^1 + b_2 \times 2^0) - 2} \times (1 + b_1 \times 2^{-1} + b_0 \times 2^{-2})$
0000	0.2500	• b_3b_2 is called the exponent part
0001	0.3125	$-b_3b_2 = 00$ represents 0.25 (subrange 0.25–0.50)
0010	0.3750	$-b_3b_2 = 01$ represents 0.50 (subrange 0.50–1.00)
0011	0.4375	$-b_3b_2 = 10$ represents 1.00 (subrange 1.00–2.00) $-b_2b_2 = 11$ represents 2.00 (subrange 2.00–4.00)
0100	0.5000	 <i>b</i>₁<i>b</i>₀ is called the fraction part
0101	0.6250	 – fraction part divides up subrange
0110	0.7500	1 1 0
0111	0.8750	How do we represent $v = 0.625$?
1000	1.0000	
1001	1.2500	
1010	1.5000	
1011	1.7500	
1100	2.0000	How do we represent $v = 0.33$?
1101	2.5000	
1110	3.0000	
1111	3.5000	