ECE 2300 Digital Logic and Computer Organization
Topic 5: Number Systems
http://www.csl.cornell.edu/courses/ece2300
School of Electrical and Computer Engineering

Cornell University

revision: 2025-10-05-14-17

List of Problems

1 Recall 2
T.A Limits o e 2
1.B Conversion i e e e 3

2 Subtraction!
2.A SignMagnitude
2B “Half"oftheproblem
2.C ATransistor Schematic
2D The “Full” Solution e
2E Timing Analysis
2F Adding Subtractors?

O O 0 N3 SN G o

2.G Analternative? e e

2H Comparison 10

ECE 2300 Digital Logic and Computer Organization NetID:

Problem 1. Recall

In this problem, we’ll talk about the features of different number systems.

Part 1.A Limits

How many different numbers can be represented with 4 bits? 8 bits? n bits?

What is the largest 16 bit unsigned binary number? How about 32 bits? How about # bits?

What is the range (in the format [a, b]) of the following n bit binary number systems?

System Range

Unsigned

Sign
Magnitude

Two’s
Complement

ECE 2300 Digital Logic and Computer Organization NetID:

Part 1.B Conversion

Convert the following decimal numbers into each number system. Represent each number with 6
bits. If it is not possible to represent the decimal number in that system, please denote so with an x.

Number Unsigned Sign-magnitude 2’s Complement

Convert the following binary numbers from each number system. Assume each number has 6 bits.

Binary Unsigned Sign-magnitude 2’s Complement

000000

000101

011010

001011

100000

111111

110101

101001

ECE 2300 Digital Logic and Computer Organization NetID:

Problem 2. Subtraction!

In this problem, we consider subtraction and how to efficiently implement it for unsigned numbers.

Part 2.A Sign Magnitude

In the spirit of regularity, we may consider re-using our adder (from lecture) to do subtraction.

A perhaps naive approach to compute 2 — b would be to rewrite it as a + (—b). Of course, with
unsigned numbers, representing —b might be difficult. Instead, we turn to Sign Magnitude numbers.

This yields a simple “algorithm” of sorts. Use the same, smallest possible bitwidth for a and b.
Prepend a bit to both a and b (that is, place it in the most significant position). Prepend a 0 to 2 and a
1 to b to negate it. Then, we use our fantastic adder implementations to add a and —b, yielding a — b.

But, does this work? Let’s find out by trying a few examples.

Try to compute 7 — 4 and 11 — 7 with this method.

Does this method work? Why or why not?

ECE 2300 Digital Logic and Computer Organization NetID:

Part 2.B “Half" of the problem

The dissapointing results from Signed Magnitude motivates specialized hardware for subtraction.

In fact, we can implement a subtractor using a structure analogous to an adder. However, we abandon
the notion of a carry for that of a borrow. Otherwise, the interface is almost identical (modularity).

A borrow means the current bit of a is not large enough, so we must “borrow” from the next bit.
A Half Subtractor subtracts two one-bit numbers a and b.
It produces the difference d = a — b and a borrow bit.

Complete the truth table for this building block.

A B A B Xout D
v v 0o 0
Xout €1 HS 0 1
7 1 0
D 1 1

Hint: when you borrow, you are “using” the next bit (2 larger), so, in this case, what should D be?

Write the boolean expressions for D and Xqyt.

Complete a gate-level implementation of a Half Subtractor.

ECE 2300 Digital Logic and Computer Organization NetID:

Part 2.C A Transistor Schematic

Let’s consider the transistor schematic for Xou from our Half Subtractor.

Complete the transistor schematic for Xout

It’s likely that your schematic uses 8 transistors. However, we can optimize this.

Your implementation likely uses a AND/OR and an inverter. But, it would be much more efficient if
we used an NAND/NOR and an inverter. Simplify the boolean expression to use a NAND/NOR
and a single inverter and draw the new transistor schematic.

Hint: try negating your current expression twice, then use De Morgan’s to simplify the expression.

ECE 2300 Digital Logic and Computer Organization NetID:

Part 2.D The “Full” Solution

Let’s extend our half subtractor into a Full Subtractor so that we can chain them together. We extend
our previous interface to also include a borrow-in. Complete the truth table for this building block.

A B Xin Xout D

0 0 0

0 0 1

- >
“— 0
o
o

in

Write the boolean expressions for D and Xoyt.

Complete a gate-level implementation of a Full Subtractor.

ECE 2300 Digital Logic and Computer Organization NetID:

Part 2.E Timing Analysis

Use the provided timing model. Each path should be specified by the input port, each gate along the
path, and the output port. Find the propagation delay for each input/output pair. Also identify
the propagation delay and contamination delay for every path in the network. And identify the
critical and short paths. You may not need every row in the table.

Path tpd Gate tpa ted

A—D NOT 1t 1t

B—D NAND2 27 1t

Xin =+ D NOR2 3T 1t

A — Xout AND2 3T 1t

B — Xout OR2 4T 1T

Xin = Xout XOR2 7T 6T
Propagation = Contamination Critical Short
Path Delay Delay Path? Path?

ECE 2300 Digital Logic and Computer Organization NetID:

Part 2.F Adding Subtractors?

We can put several Full Subtractors together to create a Ripple Carry Subtractor.

A, B, A, B, A, B, A, B,
v v v ¥ v ¥ v v
X3 t<_ FS :XZ,out FS :Xl,out FS :XO,out FS 0
o > | Xsn 2 | Xon " Xin O Xoin
v v v v
D, D, D, Dy,

Using the timing analysis from before, what is the propagation delay through this network?

Generally, if we have an n-bit Ripple-Carry, what is the propagation delay?

That’s not so good... How can we make our subtractor faster?

Part 2.G An alternative?

Recall from lecture, that subtraction can be implemented with an adder in one of the number systems.
Which number system was this?

How do we use this number system to implement subtraction?

ECE 2300 Digital Logic and Computer Organization NetID:

Part 2.H Comparison

Compare both subtractor implementations (dedicated vs 2’s complement). Is one definitely better
than the other? Which would you use in an add/sub unit? Which better fits our course principles
of modularity, hierarchy, and regularity?

Compare qualitative and/or quantitative area and timing (see TO2 practice problems for a simple area model). For
a n bit unsigned number, we must include a sign bit for 2’s complement addition. Do our subtractor need this?

Good luck for Prelim 1. You got this!

10

