ECE 2300 Digital Logic and Computer Organization Fall 2024

Topic 6: Sequential Logic Gates

School of Electrical and Computer Engineering Cornell University

revision: 2024-10-03-10-14

1	Lato	hes, Flip-Flops, and Registers	3
	1.1.	SR Latch	3
	1.2.	D Latch	4
	1.3.	D Flip-Flop	5
	1.4.	D Flip-Flop with Reset	ϵ
	1.5.	D Flip-Flop with Reset and Enable	ϵ
	1.6.	Multi-Bit Register	7
2	Seq	uential Gate-Level Networks	8
3	Seq	uential Gate-Level Timing	10
	3.1.	Setup Time Constraint	13
	3.2.	Hold Time Constraint	18
	3.3.	Summary of Sequential Gate-Level Timing	21

Copyright © 2024 Christopher Batten. All rights reserved. This handout was prepared by Prof. Christopher Batten at Cornell University for ECE 2300 / ENGRD 2300 Digital Logic and Computer Organization. Download and use of this handout is permitted for individual educational non-commercial purposes only. Redistribution either in part or in whole via both commercial or non-commercial means requires written permission.

1. Latches, Flip-Flops, and Registers

- Combinational Logic: outputs only depend on current inputs
- Sequential Logic: outputs depend on current inputs and previous inputs

1.1. SR Latch

	S	R	X	Q
	0	0		
	0	1		
-	1	0		
-	1	1		

• SR Latch: bi-stable state element with set and reset inputs

1.2. D Latch

- *SR Latch:* Asserting one input determines not only *what* the new state should be but also *when* it should change
- *D Latch:* One input controls *what* the next state should be, while second input controls *when* the state should change

clk	D	\overline{D}	S	R	X	Q
0	?					
1	0					
1	1					

1.3. D Flip-Flop

- D Latch: Input is sampled continuously when clock is high
- *D Flip-Flop:* Input is only *sampled* at a specific instance in time (on the rising edge of the clock)

1.4. D Flip-Flop with Reset

1.5. D Flip-Flop with Reset and Enable

1.6. Multi-Bit Register

2. Sequential Gate-Level Networks

A	В	X	Υ	Z
0	0			
0	1			
0	1			
1	0			
1	0			
0	0			
	0 0 0 1 1	0 0 0 0 1 0 1 1 0 1 0 0	0 0 0 0 0 1 0 1 1 0 1 0 1 0 1	0 0 0 1 0 1 1 0 1 0

- Convention for tables with implicit clock
 - One row per clock cycle
 - Inputs represent values before the rising edge
 - Other signals represent stable values after the rising edge

A	В	X	Υ	Z
0	0			
0	1			
1	0			
0	0			

3. Sequential Gate-Level Timing

 Critical Path for Combinational Gate-Level Networks: longest propagation path delay from any input to any output

Gate	t_{pd}	t_{cd}
NOT	1τ	1τ
NAND2	2τ	1τ
NOR2	3τ	1τ
AND2	3τ	1τ
OR2	4τ	1τ

Path	Propagation Delay	Critical Path?
$a \rightarrow \text{NOT} \rightarrow \text{NAND2} \rightarrow \text{NOR2} \rightarrow \text{y}$		
$b \to NAND2 \to NOR2 \to y$		
$c \to \text{NOT} \to \text{NOR2} \to \text{y}$		

• Identify all paths from any input to any output

 $\mathsf{D} \to \mathsf{AND2} \to \mathsf{NOR2} \to \mathsf{NOR2} \to \mathsf{AND2} \to \mathsf{NOR2} \to \mathsf{NOR2} \to \mathsf{Q}$

Critical Path for Combinational Gate-Level Networks

- Longest propagation path delay from:
 - any input to any output

Critical Path for Sequential Gate-Level Networks

- Longest propagation path delay from:
 - any input to any output
 - any input to any flip-flop
 - any flip-flop to any flip-flop
 - any flip-flop to any output

3.1. Setup Time Constraint

Clock-to-Q Propagation Delay ($t_{pd,cq}$)

Setup Time (t_{setup} **)**

Setup Time Constraint or Max-Delay Constraint

Consider the following sequential gate-level network.

Highlight the critical path on the above gate-level network. Use the setup time constraint to derive an equation for the minimum clock period or cycle time (T_c) in terms of the following parameters.

- Flip-flop clock-to-Q propagation delay $(t_{pd,cq})$
- Flip-flop setup time (*t*_{setup})
- Propagation delay of NOR2 (tpd,nor2)
- Propagation delay of NAND2 (tpd,nand2)

Calculate the minimum clock period or cycle time (T_c) given the delay model we have developed in this topic.

3.2. Hold Time Constraint

Clock-to-Q Contamination Delay $(t_{cd,cq})$

Hold Time (t_{hold})

3.3. Summary of Sequential Gate-Level Timing

