
ECE 2300 Digital Logic and
Computer Organization

Fall 2024

Topic 12: Pipelined Processors

School of Electrical and Computer Engineering
Cornell University

revision: 2024-11-19-10-52

1 High-Level Idea for Single-Cycle Processors 3

1.1. Transactions and Steps . 5

1.2. Technology Constraints . 6

1.3. First-Order Performance Equation 6

2 Two-Stage Pipelined Processor 7

2.1. RAW Data Hazards Through Registers 9

2.2. RAW Data Hazards → Software Scheduling 11

2.3. RAW Data Hazards → Hardware Stalling 12

2.4. RAW Data Hazards → Hardware Bypassing 13

2.5. RAW Data Hazards Through Memory 16

2.6. Control Hazards . 17

2.7. Control Hazards → Software Scheduling 20

2.8. Control Hazards → Hardware Speculation 21

2.9. Analyzing Performance . 23

3 Five-Stage Pipelined Processor 27

3.1. RAW Data Hazards Through Registers 28

3.2. RAW Data Hazards → Hardware Stalling 29

3.3. RAW Data Hazards → Hardware Bypassing 30

3.4. RAW Data Hazards Through Memory 34

3.5. Control Hazards . 35

3.6. Control Hazards → Hardware Speculation 36

3.7. Analyzing Performance . 38

Register-Transfer Level

Devices

Prog Lang & Compilers
Algorithms

Microarchitecture

Technology

Applications

Operating Systems
Architecture

Digital Logic

Analog Circuits

Microarchitecture

Digital Circuits

T02: Comb Gates

T01: Digital Circuits

T05: Num Systems

T03: Boolean Eqs

T04: Comb Blocks

T06: Seq Gates

T07: FSMs

T08: Seq Blocks

T09: ISA

T12: Pipe Proc

T10: SCycle Proc

T14: Caches

T11: MCycle Proc

T13: Assembly Prog

Copyright © 2024 Christopher Batten. All rights reserved. This handout was prepared
by Prof. Christopher Batten at Cornell University for ECE 2300 / ENGRD 2300 Digital
Logic and Computer Organization. Download and use of this handout is permitted for
individual educational non-commercial purposes only. Redistribution either in part or in
whole via both commercial or non-commercial means requires written permission.

Topic 12: Pipelined Processors 2

1. High-Level Idea for Single-Cycle Processors

1. High-Level Idea for Single-Cycle Processors

7pm 8pm 9pm 10pm 11pm 12am 1am 2am 3am

7pm 8pm 9pm

Anne's
Load

Ben's
Load

Cathy's
Load

Dave's
Load

Fixed Time Slot Laundry (Single-Cycle Processors)

Pipelined Laundry

10pm

0 hr 1 h 2 hr

Anne's
Load

Ben's
Load

Cathy's
Load

Dave's
Load

Four Types of Transactions

2.0 hr

Transaction
Latency

1.0 hr

1.5 hr

2.0 hr

Anne requires all four steps

Ben is messy, leaves unfolded
clothes in his laundry basket

Cathy does not have a bureau,
leaves folded clothes in basket

Dave requires all four steps

Transaction
Steps

Washing
(30 min)

Drying
(30 min)

Folding
(30 min)

Storing
(30 min)

7pm 8pm 9pm 10pm 11pm 12am 1am

Anne's
Load

Ben's
Load

Cathy's
Load

Dave's
Load

Variable Time Slot Laundry (Multi-Cycle Processors)

Topic 12: Pipelined Processors 3

1. High-Level Idea for Single-Cycle Processors

Single-Cycle Quad Adder

ad
d

ad
d

ad
d

4

4

4

4 4

W

X

Y
Z

4

4

4

4

ad
d

4

W

X
Y

Z

ad
d

ad
d

ad
d

4

4

4

4 4
Z

Stage S1 Stage S2 Stage S3

Step
1

Transaction A

Step
2

Step
3

Step
1

Step
2

Step
3

Transaction B

Step
1

Step
2

Step
3

Step
1

Step
2

Step
3

Transaction A Transaction B

Step
1

Step
2

Step
3

Step
1

Step
2

Step
3

Step
1

Step
2

Step
3

Step
1

Step
2

Step
3

Multi-Cycle Quad Adder

Pipelined Quad Adder

3 1 2 0

5 4 0 6

4 5 3 1

2 3 5 4

Transaction A

Transaction B

Transaction C

Transaction D

Quad
Adder

6

15

13

14

Topic 12: Pipelined Processors 4

1. High-Level Idea for Single-Cycle Processors 1.1. Transactions and Steps

1.1. Transactions and Steps
• We can think of each instruction as a transaction
• Executing a transaction involves a sequence of steps

add addi mul lw sw jal jr bne

Fetch Instruction ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Decode Instruction ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Read Registers ✓ ✓ ✓ ✓ ✓ ✓ ✓

Register Arithmetic ✓ ✓ ✓ ✓ ✓ ✓

Read Memory ✓

Write Memory ✓

Write Registers ✓ ✓ ✓ ✓ ✓

Update PC ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Fetch
Inst

lw

Decode
Inst

Reg
Arith

Read
Mem

Write
Reg

Read
Reg

Update
PC

Fetch
Inst

add

Decode
Inst

Reg
Arith

Write
Reg

Read
Reg

Update
PC

Fetch
Inst

Decode
Inst

Update
PC

jal

S
in
g
le
-

C
y
cl
e

Write
Reg

jal

Fetch
Inst

lw

Decode
Inst

Reg
Arith

Read
Mem

Write
Reg

Read
Reg

Update
PC

Fetch
Inst

add

Decode
Inst

Reg
Arith

Write
Reg

Read
Reg

Update
PC

Fetch
Inst

Decode
Inst

Update
PCM

u
lt
i-

C
y
cl
e

Write
Reg

Fetch
Inst

lw

Decode
Inst

Reg
Arith

Read
Mem

Write
Reg

Read
Reg

Update
PC

Fetch
Inst

Decode
Inst

Reg
Arith

Write
Reg

Read
Reg

Update
PC

Fetch
Inst

Decode
Inst

Update
PC

add

j

P
ip
el
in
ed

Topic 12: Pipelined Processors 5

1. High-Level Idea for Single-Cycle Processors 1.2. Technology Constraints

1.2. Technology Constraints

• Assume modern technology
where logic is cheap and fast
(e.g., fast integer ALU)

• Assume multi-ported register
files with a reasonable
number of ports are feasible

• Assume small amount of very
fast memory (caches) backed
by large, slower memory

Control Status

Control Unit

Datapath

<1 cycle
combinational

Memory

regfile

imem
req

imem
resp

dmem
req

dmem
resp

1.3. First-Order Performance Equation

Time
Program

=
Instructions

Program
× Avg Cycles

Instruction
× Time

Cycle

• Instructions / program depends on source code, compiler, ISA
• Avg cycles / instruction (CPI) depends on ISA, microarchitecture
• Time / cycle depends upon microarchitecture and implementation

Microarchitecture CPI Cycle Time

Single-Cycle Processor 1 long
Multi-Cycle Processor >1 short
Pipelined Processor ≈1 short

Topic 12: Pipelined Processors 6

2. Two-Stage Pipelined Processor

2. Two-Stage Pipelined Processor
• Incrementally develop an unpipelined datapath
• Keep data flowing from left to right
• Position control signal table early in the diagram
• Divide datapath/control into stages by inserting pipeline registers
• Keep the pipeline stages roughly balanced
• Forward arrows should avoid “skipping” pipeline registers
• Backward arrows will need careful consideration

pc_plus4

pc_plus4

result_sel_B

ir[31:0]

jr

eq_B

wb_sel_B

pc_A +4

regfile
(read)ir[24:20]

ir[19:15]

regfile
(write)

rf_
wen_B

rf_
waddr_B

regfile
(write)

Control Signal
Table

imemreq
addr

imemresp
data

dmemreq
addr

dmemreq
data

dmemresp
data

imm_type

immgen
a
lu

m
u

l

op1_sel_A

+

alu_fn_B
op2_sel_A

jbtarg

imemreq.
addr

imemresp.
data

dmemreq.
addr

dmemreq.
data

dmemresp.
data

F D X M W

F D X M W

F D X M W

Stage A Stage B

Stage A Stage B

Stage A Stage B

addi x1, x2, 1

addi x3, x4, 1

addi x5, x6, 1

Topic 12: Pipelined Processors 7

2. Two-Stage Pipelined Processor 2.1. RAW Data Hazards Through Registers

Pipeline diagrams

addi x1, x2, 1

addi x3, x4, 1

addi x5, x6, 1

What would be the total execution time if these three instructions were
repeated 10 times?

Hazards occur when instructions interact with each other in pipeline

• RAW Data Hazards: An instruction depends on a data value
produced by an earlier instruction

• Control Hazards: Whether or not an instruction should be executed
depends on a control decision made by an earlier instruction

• Structural Hazards: An instruction in the pipeline needs a resource
being used by another instruction in the pipeline

• WAW and WAR Name Hazards: An instruction in the pipeline is
writing a register that an earlier instruction in the pipeline is either
writing or reading

Stalling and squashing instructions

• Stalling: An instruction originates a stall due to a hazard, causing all
instructions earlier in the pipeline to also stall. When the hazard is
resolved, the instruction no longer needs to stall and the pipeline
starts flowing again.

• Squashing: An instruction originates a squash due to a hazard, and
squashes all previous instructions in the pipeline (but not itself). We
restart the pipeline to begin executing a new instruction sequence.

Topic 12: Pipelined Processors 8

2. Two-Stage Pipelined Processor 2.1. RAW Data Hazards Through Registers

2.1. RAW Data Hazards Through Registers

RAW data hazards occur when one instruction depends on a data value
produced by a preceding instruction still in the pipeline. We use
architectural dependency arrows to illustrate RAW dependencies in
assembly code sequences.

addi x1, x2, 1

addi x3, x1, 1

addi x4, x5, 1

Using pipeline diagrams to illustrate RAW hazards

We use microarchitectural dependency arrows to illustrate RAW
hazards on pipeline diagrams.

F D X M W

F D X M W

F D X M W

Stage A Stage B

Stage A Stage B

Stage A Stage B

addi x1, x2, 1

addi x3, x1, 1

addi x4, x5, 1

addi x1, x2, 1

addi x3, x1, 1

addi x4, x5, 1

Topic 12: Pipelined Processors 9

2. Two-Stage Pipelined Processor 2.1. RAW Data Hazards Through Registers

Approaches to resolving data hazards

• Software Scheduling: Expose data hazards in ISA forcing assembly
level programmer or compiler to explicitly avoid scheduling
instructions that would create hazards

• Hardware Stalling: Hardware includes control logic that freezes
later instructions until earlier instruction has finished producing
data value; software scheduling can still be used to avoid stalling
(i.e., software scheduling for performance)

• Hardware Bypassing/Forwarding: Hardware allows values to be
sent from an earlier instruction to a later instruction before the
earlier instruction has left the pipeline

• Hardware Scheduling: Hardware dynamically schedules
instructions to avoid RAW hazards, potentially allowing
instructions to execute out of order

• Hardware Speculation: Hardware guesses that there is no hazard
and allows later instructions to potentially read invalid data; detects
when there is a problem, squashes and then re-executes instructions
that operated on invalid data

Topic 12: Pipelined Processors 10

2. Two-Stage Pipelined Processor 2.2. RAW Data Hazards → Software Scheduling

2.2. RAW Data Hazards → Software Scheduling

• ISA specifies exactly how many instructions must be between a
register write and a later read of that register

• Assembly level programmer or compiler must insert independent
instructions to delay the read of earlier write

• If cannot find any independent instructions, must insert instructions
do nothing (nops) to delay read of earlier write. These nops count as
real instructions increasing instructions per program.

• If hazard is exposed in ISA, software scheduling is required for
correctness! A scheduling mistake can cause undefined behavior.

addi x1, x2, 1

addi x3, x1, 1

addi x4, x5, 1

Resolving RAW hazards using software scheduling

addi x1, x2, 1

addi x0, x0, 0

addi x3, x1, 1

addi x4, x5, 1

addi x1, x2, 1

addi x4, x5, 1

addi x3, x1, 1

Topic 12: Pipelined Processors 11

2. Two-Stage Pipelined Processor 2.3. RAW Data Hazards → Hardware Stalling

2.3. RAW Data Hazards → Hardware Stalling

• Hardware includes control logic that freezes later instructions (in
front of pipeline) until earlier instruction (in back of pipeline) has
finished producing data value.

• Software scheduling is not required for correctness, but can improve
performance! Programmer or compiler schedules independent
instructions to reduce the number of cycles spent stalling.

addi x1, x2, 1

addi x3, x1, 1

addi x4, x5, 1

Modifications to datapath/control to support hardware stalling

pc_plus4

pc_plus4

result_sel_B

ir[31:0]

jr

eq_B

wb_sel_B

pc_A +4

regfile
(read)ir[24:20]

ir[19:15]

regfile
(write)

rf_
wen_B

rf_
waddr_B

regfile
(write)

Control Signal
Table

imemreq
addr

imemresp
data

dmemreq
addr

dmemreq
data

dmemresp
data

imm_type

immgen

a
lu

m
u

l

op1_sel_A

+

alu_fn_B
op2_sel_A

jbtarg

A Stage B Stage

cs_AB

pc_A

Control
Logic

op1_AB

sd_AB

op2_AB

jtarg

imemreq.
addr

imemresp.
data

dmemreq.
addr

dmemreq.
data

dmemresp.
data

val_AB

reg_
en_A

CSig Table
Stall Logic

Topic 12: Pipelined Processors 12

2. Two-Stage Pipelined Processor 2.4. RAW Data Hazards → Hardware Bypassing

Deriving the stall signal

add addi mul lw sw jal jr bne

rs1_en

rs2_en

rf_wen

stall_waddr_B_rs1_A = rs1_en_A && val_B && rf_wen_B
&& (inst_rs1_A == rf_waddr_B) && (rf_waddr_B != 0)

stall_waddr_B_rs2_A = rs2_en_A && val_B && rf_wen_B
&& (inst_rs2_A == rf_waddr_B) && (rf_waddr_B != 0)

stall_A = stall_waddr_B_rs1_A || stall_waddr_B_rs2_A;

Draw the pipeline diagram assuming RAW hazards are resolved
with hardware stalling

addi x1, x0, 100

addi x2, x0, 4

add x3, x1, x2

lw x4, 0(x3)

sw x4, 0(x5)

addi x6, x7, 1

2.4. RAW Data Hazards → Hardware Bypassing

Hardware allows values to be sent from an earlier instruction (in back
of pipeline) to a later instruction (in front of pipeline) before the earlier
instruction has left the pipeline. Sometimes called “forwarding”.

Topic 12: Pipelined Processors 13

2. Two-Stage Pipelined Processor 2.4. RAW Data Hazards → Hardware Bypassing

Pipeline diagram showing hardware bypassing for RAW data hazards

addi x1, x2, 1

addi x3, x1, 1

addi x4, x5, 1

Adding single bypass path to support limited hardware bypassing

pc_plus4

pc_plus4

result_sel_B

ir[31:0]

jr

eq_B

wb_sel_B

pc_A +4

regfile
(read)ir[24:20]

ir[19:15]

regfile
(write)

rf_
wen_B

rf_
waddr_B

regfile
(write)

Control Signal
Table

imemreq
addr

imemresp
data

dmemreq
addr

dmemreq
data

dmemresp
data

imm_type

immgen
a
lu

m
u

l

op1_sel_A

+

alu_fn_B
op2_sel_A

jbtarg

A Stage B Stage

cs_AB

pc_A

Control
Logic

op1_AB

sd_AB

op2_AB

jtarg

val_AB

reg_
en_A

CSig Table
Stall Logic

CSig Table
Stall & Bypass

Logic

op1_
byp_
sel_A

Deriving the bypass and stall signals

stall_waddr_B_rs1_A = 0
bypass_waddr_B_rs1_A = rs1_en_A && val_B && rf_wen_B

&& (inst_rs1_A == rf_waddr_B) && (rf_waddr_B != 0)

Topic 12: Pipelined Processors 14

2. Two-Stage Pipelined Processor 2.4. RAW Data Hazards → Hardware Bypassing

Pipeline diagram showing multiple hardware bypass paths

addi x2, x10, 1

addi x2, x11, 1

addi x1, x2, 1

addi x3, x4, 1

addi x5, x3, 1

add x6, x1, x3

sw x5, 0(x1)

Adding all bypass path to support full hardware bypassing

pc_plus4

pc_plus4

result_sel_B

ir[31:0]

jr

eq_B

wb_sel_B

pc_A +4

regfile
(read)ir[24:20]

ir[19:15]

regfile
(write)

rf_
wen_B

rf_
waddr_B

regfile
(write)

Control Signal
Table

imemreq
addr

imemresp
data

dmemreq
addr

dmemreq
data

dmemresp
data

imm_type

immgen

a
lu

m
u

l

op1_sel_A

+

alu_fn_B
op2_sel_A

jbtarg

A Stage B Stage

cs_AB

pc_A

Control
Logic

op1_AB

sd_AB

op2_AB

jtarg

val_AB

reg_
en_A

CSig Table
Stall Logic

CSig Table
Stall & Bypass

Logic

op1_
byp_
sel_A

bypass_from_B

op2_
byp_
sel_A

Topic 12: Pipelined Processors 15

2. Two-Stage Pipelined Processor 2.5. RAW Data Hazards Through Memory

Draw the pipeline diagram assuming RAW hazards are resolved
with hardware bypassing

addi x1, x0, 100

addi x2, x0, 4

add x3, x1, x2

lw x4, 0(x3)

sw x4, 0(x5)

addi x6, x7, 1

2.5. RAW Data Hazards Through Memory

So far we have only studied RAW data hazards through registers, but we
must also carefully consider RAW data hazards through memory.

sw x1, 0(x2)
lw x3, 0(x4) # RAW dependency occurs if R[x2] == R[x4]

sw x1, 0(x2)

lw x3, 0(x4)

Topic 12: Pipelined Processors 16

2. Two-Stage Pipelined Processor 2.6. Control Hazards

2.6. Control Hazards

Control hazards occur when whether or not an instruction should be
executed depends on a control decision made by an earlier instruction.
We use architectural dependency arrows to illustrate control
dependencies in assembly code sequences.

Static Instr Sequence

addi x1, x0, 1
jal x0, foo
addi x2, x0, 1

foo: bne x0, x1, bar
addi x3, x0, 1

bar: addi x4, x0, 1

Dynamic Instr Sequence

addi x1, x0, 1
jal x0, foo
bne x0, x1, bar
addi x4, x0, 1

Using pipeline diagrams to illustrate control hazards

We use microarchitectural dependency arrows to illustrate control
hazards on pipeline diagrams.

addi x1, x0, 1

jal x0, foo

bne x0, x1, bar

addi x4, x0, 1

Topic 12: Pipelined Processors 17

2. Two-Stage Pipelined Processor 2.6. Control Hazards

What hardware would be required to make the vertical
microarchitectural dependency arrow possible?

pc_plus4

pc_plus4

result_sel_B

ir[31:0]

jr

eq_B

wb_sel_B

pc_A +4

regfile
(read)ir[24:20]

ir[19:15]

regfile
(write)

rf_
wen_B

rf_
waddr_B

regfile
(write)

Control Signal
Table

imemreq
addr

imemresp
data

dmemreq
addr

dmemreq
data

dmemresp
data

imm_type

immgen

a
lu

m
u

l

op1_sel_A

+

alu_fn_B
op2_sel_A

jbtarg

A Stage B Stage

cs_AB

pc_A

Control
Logic

op1_AB

sd_AB

op2_AB

jtarg

val_AB

reg_
en_A

CSig Table
Stall Logic

CSig Table
Stall & Bypass

Logic

op1_
byp_
sel_A

bypass_from_B

op2_
byp_
sel_A

Topic 12: Pipelined Processors 18

2. Two-Stage Pipelined Processor 2.6. Control Hazards

Approaches to resolving control hazards

• Software Scheduling: Expose control hazards in ISA forcing
assembly level programmer or compiler to explicitly avoid
scheduling instructions that would create hazards

• Hardware Speculation: Hardware guesses which way the control
flow will go and potentially fetches incorrect instructions; detects
when there is a problem and re-executes instructions that are along
the correct control flow

• Software Predication: Assembly level programmer or compiler
converts control flow into data flow by using instructions that
conditionally execute based on a data value

• Software Hints: Assembly level programmer or compiler provides
hints about whether a conditional branch will be taken or not taken,
and hardware can use these hints for more efficient hardware
speculation

Topic 12: Pipelined Processors 19

2. Two-Stage Pipelined Processor 2.7. Control Hazards → Software Scheduling

2.7. Control Hazards → Software Scheduling

Expose branch delay slots as part of the instruction set. Branch delay
slots are instructions that follow a jump or branch and are always ex-
ecuted regardless of whether a jump or branch is taken or not taken.
Compiler tries to insert useful instructions, otherwise inserts nops.

addi x1, x0, 1
jal x0, foo
addi x2, x0, 1

foo: bne x0, x1, bar
nop
addi x3, x0, 1

bar: addi x4, x0, 1

Assume we modify the TinyRV1
instruction set to specify that BNE
instructions have a
single-instruction branch delay
slot (i.e., one instruction after a
BNE is always executed).

Pipeline diagram showing using branch delay slots for control hazards

addi x1, x0, 1

jal x0, foo

bne x0, x1, bar

nop

addi x4, x0, 1

Topic 12: Pipelined Processors 20

2. Two-Stage Pipelined Processor 2.8. Control Hazards → Hardware Speculation

2.8. Control Hazards → Hardware Speculation

Hardware guesses which way the control flow will go and potentially
fetches incorrect instructions; detects when there is a problem and
re-executes instructions the instructions that are along the correct
control flow. We will only consider a simple branch prediction scheme
where the hardware always predicts not taken.

Pipeline diagram when branch is not taken

addi x1, x0, 1

jal x0, foo

bne x0, x1, bar

addi x3, x0, 1

addi x4, x0, 1

Pipeline diagram when branch is taken

addi x1, x0, 1

jal x0, foo

bne x0, x1, bar

addi x3, x0, 1

addi x4, x0, 1

Topic 12: Pipelined Processors 21

2. Two-Stage Pipelined Processor 2.8. Control Hazards → Hardware Speculation

Modifications to datapath/control to support hardware speculation

pc_plus4

pc_plus4

result_sel_B

ir[31:0]

jr

eq_B

wb_sel_B

pc_A +4

regfile
(read)ir[24:20]

ir[19:15]

regfile
(write)

rf_
wen_B

rf_
waddr_B

regfile
(write)

Control Signal
Table

imemreq
addr

imemresp
data

dmemreq
addr

dmemreq
data

dmemresp
data

imm_type

immgen

a
lu

m
u

l

op1_sel_A
+

alu_fn_B
op2_sel_A

jbtarg

A Stage B Stage

cs_AB

pc_A

Control
Logic

op1_AB

sd_AB

op2_AB

jtarg

val_AB

reg_
en_A

CSig Table
Stall Logic

CSig Table
Stall & Bypass

Logic

op1_
byp_
sel_A

bypass_from_B

op2_
byp_
sel_A

btarg_AB

btarg

pc_sel_Apc_sel_A

CSig Table
Stall, Bypass, &
Squash Logic

Deriving the squash signals

squash_A = val_B && (op_B == bne) && !eq_B

Topic 12: Pipelined Processors 22

2. Two-Stage Pipelined Processor 2.9. Analyzing Performance

Draw the pipeline diagram assuming control hazards are resolved
with hardware speculation

addi x1, x0, 0
bne x1, x0, foo
addi x2, x0, 1
addi x3, x0, 1

foo: bne x2, x0, bar
addi x4, x0, 1
addi x5, x0, 1

bar: addi x6, x0, 1

2.9. Analyzing Performance

Time
Program

=
Instructions

Program
× Cycles

Instruction
× Time

Cycles

• Instructions / program depends on source code, compiler, ISA
• Cycles / instruction (CPI) depends on ISA, microarchitecture
• Time / cycle depends upon microarchitecture and implementation

Topic 12: Pipelined Processors 23

2. Two-Stage Pipelined Processor 2.9. Analyzing Performance

Estimating minimum clock period (cycle time)

pc_plus4

pc_plus4

result_sel_B

ir[31:0]

jr

eq_B

wb_sel_B

pc_A +4

regfile
(read)ir[24:20]

ir[19:15]

regfile
(write)

rf_
wen_B

rf_
waddr_B

regfile
(write)

Control Signal
Table

imemreq
addr

imemresp
data

dmemreq
addr

dmemreq
data

dmemresp
data

imm_type

immgen

a
lu

m
u

l

op1_sel_A

+

alu_fn_B
op2_sel_A

jbtarg

A Stage B Stage

cs_AB

pc_A

Control
Logic

op1_AB

sd_AB

op2_AB

jtarg

val_AB

reg_
en_A

CSig Table
Stall Logic

CSig Table
Stall & Bypass

Logic

op1_
byp_
sel_A

bypass_from_B

op2_
byp_
sel_A

btarg_AB

btarg

pc_sel_Apc_sel_A

CSig Table
Stall, Bypass, &
Squash Logic

tpd

32-bit 2-to-1 Mux 4τ
32-bit 4-to-1 Mux 8τ
32-bit Adder 60τ
32-bit ALU 64τ
32-bit Multiplier 100τ
32-bit +4 Unit 30τ
ImmGen Unit 12τ

32-bit Reg Clk-to-Q 9τ
32-bit Reg Setup 10τ
Register File Read 25τ
Register File Setup 20τ
Memory Read 120τ
Memory Setup 120τ

Topic 12: Pipelined Processors 24

2. Two-Stage Pipelined Processor 2.9. Analyzing Performance

Estimating execution time

How long in units of τ will it take to execute the vector-vector add
program assuming n is 64?

Pseudo-Code

1 for i in range(n):
2 dest[i] = src0[i] + src1[i]

Assembly Code

1 # addr(dest[i]):x1, addr(src0[i]):x2
2 # addr(src1[i]):x3, n:x4
3 loop:
4 lw x5, 0(x1)
5 lw x6, 0(x2)
6 add x7, x5, x6
7 sw x7, 0(x3)
8 addi x1, x1, 4
9 addi x2, x2, 4

10 addi x3, x3, 4
11 addi x4, x4, -1
12 bne x4, x0, loop

Topic 12: Pipelined Processors 25

2. Two-Stage Pipelined Processor 2.9. Analyzing Performance

0 1 2 3 4 5 6 7 8 9 10 11 12 13

lw x5, 0(x1)

lw x6, 0(x2)

add x7, x5, x6

sw x7, 0(x3)

addi x1, x1, 4

addi x2, x2, 4

addi x3, x3, 4

addi x4, x4, -1

bne x4, x0, loop

opA

lw x5, 0(x1)

lw x6, 0(x2)

add x7, x5, x6

sw x7, 0(x3)

Results for vector-vector add example

Microarchitecture Inst/Prog Cycle/Inst Time/Cycle Exec Time

Single-Cycle 576 1.0 366 τ 210 kτ

Multi-Cycle 576 6.7 231 τ 886 kτ

2-Stage Pipelined 576

Topic 12: Pipelined Processors 26

3. Five-Stage Pipelined Processor

3. Five-Stage Pipelined Processor
• Incrementally develop an unpipelined datapath
• Start with just arithmetic and memory instructions
• Keep data flowing from left to right
• Position control signal table early in the diagram
• Divide datapath/control into stages by inserting pipeline registers
• Keep the pipeline stages roughly balanced
• Forward arrows should avoid “skipping” pipeline registers

result_sel_X

ir[31:0]

eq_X

wb_sel_M

pc_F +4

regfile
(read)ir[24:20]

ir[19:15]

regfile
(write)

rf_
wen_W

rf_
waddr_W

regfile
(write)

Control Signal
Table

imemreq
addr

imemresp
data

dmemreq
addr

dmemreq
data

dmemresp
data

imm_type

immgen
a
lu

m
u

l

alu_fn_X
op2_sel_D

imemreq.
addr

imemresp.
data

dmemreq.
addr

dmemreq.
data

dmemresp.
data

F D X M W

F D X M W

F D X M W

addi x1, x2, 1

addi x3, x4, 1

addi x5, x6, 1

Topic 12: Pipelined Processors 27

3. Five-Stage Pipelined Processor 3.1. RAW Data Hazards Through Registers

Pipeline diagrams

addi x1, x2, 1

addi x3, x4, 1

addi x5, x6, 1

What would be the total execution time if these three instructions were
repeated 10 times?

3.1. RAW Data Hazards Through Registers

RAW data hazards occur when one instruction depends on a data value
produced by a preceding instruction still in the pipeline.

F D X M W

F D X M W

F D X M W

addi x1, x2, 1

addi x3, x1, 1

addi x4, x5, 1

addi x1, x2, 1

addi x3, x1, 1

addi x4, x5, 1

Topic 12: Pipelined Processors 28

3. Five-Stage Pipelined Processor 3.2. RAW Data Hazards → Hardware Stalling

3.2. RAW Data Hazards → Hardware Stalling

• Hardware includes control logic that freezes later instructions (in
front of pipeline) until earlier instruction (in back of pipeline) has
finished producing data value.

addi x1, x2, 1

addi x3, x1, 1

addi x4, x5, 1

Modifications to datapath/control to support hardware stalling

result_sel_X

ir[31:0]

eq_X

wb_sel_M

pc_F +4

regfile
(read)ir[24:20]

ir[19:15]

regfile
(write)

rf_
wen_W

rf_
waddr_W

regfile
(write)

Control Signal
Table

imemreq
addr

imemresp
data

dmemreq
addr

dmemreq
data

dmemresp
data

imm_type

immgen

a
lu

m
u

l

alu_fn_X
op2_sel_D

ir_FD

result
_XM

F Stage D Stage X Stage M Stage W Stage

cs_DX cs_XM cs_MW

sd_XM

result
_XM

result
_MW

pc_F

val_DX val_XM val_MWval_FD Control
Logic

Control
Logic

Control
Logic

op1_DX

sd_DX

op2_DX

imemreq.
addr

imemresp.
data

dmemreq.
addr

dmemreq.
data

dmemresp.
data

reg_
en_D

reg_
en_F

CSig Table
Stall Logic

Topic 12: Pipelined Processors 29

3. Five-Stage Pipelined Processor 3.3. RAW Data Hazards → Hardware Bypassing

Deriving the stall signal

stall_waddr_X_rs1_D =
val_D && rs1_en_D && val_X && rf_wen_X

&& (inst_rs1_D == rf_waddr_X) && (rf_waddr_X != 0)

stall_waddr_M_rs1_D =
val_D && rs1_en_D && val_M && rf_wen_M

&& (inst_rs1_D == rf_waddr_M) && (rf_waddr_M != 0)

stall_waddr_W_rs1_D =
val_D && rs1_en_D && val_W && rf_wen_W

&& (inst_rs1_D == rf_waddr_W) && (rf_waddr_W != 0)

... similar for stall signals for rs2 source register ...

stall_D = val_D
&& (stall_waddr_X_rs1_D || stall_waddr_X_rs2_D

|| stall_waddr_M_rs1_D || stall_waddr_M_rs2_D
|| stall_waddr_W_rs1_D || stall_waddr_W_rs2_D)

stall_F = stall_D

3.3. RAW Data Hazards → Hardware Bypassing

Hardware allows values to be sent from an earlier instruction (in back
of pipeline) to a later instruction (in front of pipeline) before the earlier
instruction has left the pipeline. Sometimes called “forwarding”.

Topic 12: Pipelined Processors 30

3. Five-Stage Pipelined Processor 3.3. RAW Data Hazards → Hardware Bypassing

Pipeline diagram showing hardware bypassing for RAW data hazards

addi x1, x2, 1

addi x3, x1, 1

addi x4, x5, 1

Adding single bypass path to support limited hardware bypassing

result_sel_X

ir[31:0]

eq_X

wb_sel_M

pc_F +4

regfile
(read)ir[24:20]

ir[19:15]

regfile
(write)

rf_
wen_W

rf_
waddr_W

regfile
(write)

Control Signal
Table

imemreq
addr

imemresp
data

dmemreq
addr

dmemreq
data

dmemresp
data

imm_type

immgen
a
lu

m
u

l

alu_fn_X
op2_sel_D

ir_FD

result
_XM

F Stage D Stage X Stage M Stage W Stage

cs_DX cs_XM cs_MW

sd_XM

result
_XM

result
_MW

pc_F

val_DX val_XM val_MWval_FD Control
Logic

Control
Logic

Control
Logic

op1_DX

sd_DX

op2_DX

reg_
en_D

reg_
en_F

CSig Table
Stall Logic

CSig Table
Stall & Bypass

Logic

op1_
byp_
sel_D

Deriving the bypass and stall signals

stall_waddr_X_rs1_D = 0
bypass_waddr_X_rs1_D =

val_D && rs1_en_D && val_X && rf_wen_X
&& (inst_rs1_D == rf_waddr_X) && (rf_waddr_X != 0)

Topic 12: Pipelined Processors 31

3. Five-Stage Pipelined Processor 3.3. RAW Data Hazards → Hardware Bypassing

Pipeline diagram showing multiple hardware bypass paths

addi x2, x10, 1

addi x2, x11, 1

addi x1, x2, 1

addi x3, x4, 1

addi x5, x3, 1

add x6, x1, x3

sw x5, 0(x1)

Adding all bypass path to support full hardware bypassing

result_sel_X

ir[31:0]

eq_X

wb_sel_M

pc_F +4

regfile
(read)ir[24:20]

ir[19:15]

regfile
(write)

rf_
wen_W

rf_
waddr_W

regfile
(write)

Control Signal
Table

imemreq
addr

imemresp
data

dmemreq
addr

dmemreq
data

dmemresp
data

imm_type

immgen

a
lu

m
u

l

alu_fn_X
op2_sel_D

ir_FD

result
_XM

F Stage D Stage X Stage M Stage W Stage

cs_DX cs_XM cs_MW

sd_XM

result
_XM

result
_MW

pc_F

val_DX val_XM val_MWval_FD Control
Logic

Control
Logic

Control
Logic

op1_DX

sd_DX

op2_DX

reg_
en_D

reg_
en_F

CSig Table
Stall Logic

CSig Table
Stall & Bypass

Logic

op1_
byp_
sel_D

bypass_from_X
bypass_from_M
bypass_from_W

op2_
byp_
sel_D

Topic 12: Pipelined Processors 32

3. Five-Stage Pipelined Processor 3.3. RAW Data Hazards → Hardware Bypassing

Handling load-use RAW dependencies

ALU-use latency is only one cycle, but load-use latency is two cycles.

lw x1, 0(x2)

addi x3, x1, 1

lw x1, 0(x2)

addi x3, x1, 1

stall_load_use_X_rs1_D =
val_D && rs1_en_D && val_X && rf_wen_X

&& (inst_rs1_D == rf_waddr_X) && (rf_waddr_X != 0)
&& (op_X == lw)

stall_load_use_X_rs2_D =
val_D && rs2_en_D && val_X && rf_wen_X

&& (inst_rs2_D == rf_waddr_X) && (rf_waddr_X != 0)
&& (op_X == lw)

stall_D =
val_D && (stall_load_use_X_rs1_D || stall_load_use_X_rs2_D)

bypass_waddr_X_rs1_D =
val_D && rs1_en_D && val_X && rf_wen_X

&& (inst_rs1_D == rf_waddr_X) && (rf_waddr_X != 0)
&& (op_X != lw)

bypass_waddr_X_rs2_D =
val_D && rs2_en_D && val_X && rf_wen_X

&& (inst_rs2_D == rf_waddr_X) && (rf_waddr_X != 0)
&& (op_X != lw)

Topic 12: Pipelined Processors 33

3. Five-Stage Pipelined Processor 3.4. RAW Data Hazards Through Memory

Pipeline diagram for simple assembly sequence

Draw a pipeline diagram illustrating how the following assembly
sequence would execute on a fully bypassed pipelined TinyRV1
processor. Include microarchitectural dependency arrows to illustrate
how data is transferred along various bypass paths.

lw x1, 0(x2)

addi x2, x1, 4

lw x3, 0(x2)

lw x4, 0(x3)

addi x4, x4, 1

addi x4, x4, 1

3.4. RAW Data Hazards Through Memory

So far we have only studied RAW data hazards through registers, but
we must also carefully consider RAW data hazards through memory.

sw x1, 0(x2)
lw x3, 0(x4) # RAW dependency occurs if R[x2] == R[x4]

sw x1, 0(x2)

lw x3, 0(x4)

Topic 12: Pipelined Processors 34

3. Five-Stage Pipelined Processor 3.5. Control Hazards

3.5. Control Hazards

Control hazards occur when whether or not an instruction should be
executed depends on a control decision made by an earlier instruction.

Static Instr Sequence

addi x1, x0, 1
jal x0, foo
opA
opB

foo: addi x2, x3, 1
bne x0, x1, bar
opC
opD
opE

bar: addi x4, x5, 1

Dynamic Instr Sequence

addi x1, x0, 1
jal x0, foo
addi x2, x3, 1
bne x0, x1, bar
addi x4, x5, 1

addi x1, x0, 1

jal x0, foo

addi x2, x3, 1

bne x0, x1, bar

addi x4, x5, 1

Topic 12: Pipelined Processors 35

3. Five-Stage Pipelined Processor 3.6. Control Hazards → Hardware Speculation

3.6. Control Hazards → Hardware Speculation

Hardware guesses which way the control flow will go and potentially
fetches incorrect instructions; detects when there is a problem and
re-executes instructions the instructions that are along the correct
control flow. We will only consider a simple branch prediction scheme
where the hardware always predicts not taken.

Pipeline diagram when branch is not taken

addi x1, x0, 1

jal x0, foo

opA

addi x2, x3, 1

bne x0, x1, bar

opC

opD

Pipeline diagram when branch is taken

addi x1, x0, 1

jal x0, foo

opA

addi x2, x3, 1

bne x0, x1, bar

opC

opD

addi x4, x5, 1

Topic 12: Pipelined Processors 36

3. Five-Stage Pipelined Processor 3.6. Control Hazards → Hardware Speculation

Modifications to datapath/control to support hardware speculation

result_sel_X

ir[31:0]

eq_X

wb_sel_M

pc_F +4

regfile
(read)ir[24:20]

ir[19:15]

regfile
(write)

rf_
wen_W

rf_
waddr_W

regfile
(write)

Control Signal
Table

imemreq
addr

imemresp
data

dmemreq
addr

dmemreq
data

dmemresp
data

imm_type

immgen

a
lu

m
u

l

alu_fn_X
op2_sel_D

ir_FD

result
_XM

F Stage D Stage X Stage M Stage W Stage

cs_DX cs_XM cs_MW

sd_XM

result
_XM

result
_MW

pc_F

val_DX val_XM val_MWval_FD Control
Logic

Control
Logic

Control
Logic

op1_DX

sd_DX

op2_DX

reg_
en_D

reg_
en_F

CSig Table
Stall Logic

CSig Table
Stall & Bypass

Logic

op1_
byp_
sel_D

bypass_from_X
bypass_from_M
bypass_from_W

op2_
byp_
sel_D

pc_FD

op1_sel_D
+

btarg_DX

pc_plus4
jr

pc_sel_F

jbtarg

always pc_plus4

btarg
jtarg

pc_sel_F

CSig Table
Stall, Bypass, &
Squash Logic

Deriving the squash signals

squash_D = val_X && (op_X == bne) && !eq_X
squash_F = squash_D || (val_D && ((op_D == jal) || (op_D == jr)))

Important: PC select logic must give priority to older instructions
(i.e., prioritize branches over jumps)! Good exam question?

Topic 12: Pipelined Processors 37

3. Five-Stage Pipelined Processor 3.7. Analyzing Performance

Draw the pipeline diagram assuming control hazards are resolved
with hardware speculation

addi x1, x0, 0
bne x1, x0, foo
addi x2, x0, 1
addi x3, x0, 1

foo: bne x2, x0, bar
addi x4, x0, 1
addi x5, x0, 1

bar: addi x6, x0, 1

3.7. Analyzing Performance

Time
Program

=
Instructions

Program
× Cycles

Instruction
× Time

Cycles

• Instructions / program depends on source code, compiler, ISA
• Cycles / instruction (CPI) depends on ISA, microarchitecture
• Time / cycle depends upon microarchitecture and implementation

Topic 12: Pipelined Processors 38

3. Five-Stage Pipelined Processor 3.7. Analyzing Performance

Estimating minimum clock period (cycle time)

result_sel_X

ir[31:0]

eq_X

wb_sel_M

pc_F +4

regfile
(read)ir[24:20]

ir[19:15]

regfile
(write)

rf_
wen_W

rf_
waddr_W

regfile
(write)

Control Signal
Table

imemreq
addr

imemresp
data

dmemreq
addr

dmemreq
data

dmemresp
data

imm_type

immgen

a
lu

m
u

l

alu_fn_X
op2_sel_D

ir_FD

result
_XM

F Stage D Stage X Stage M Stage W Stage

cs_DX cs_XM cs_MW

sd_XM

result
_XM

result
_MW

pc_F

val_DX val_XM val_MWval_FD Control
Logic

Control
Logic

Control
Logic

op1_DX

sd_DX

op2_DX

reg_
en_D

reg_
en_F

CSig Table
Stall Logic

CSig Table
Stall & Bypass

Logic

op1_
byp_
sel_D

bypass_from_X
bypass_from_M
bypass_from_W

op2_
byp_
sel_D

pc_FD

op1_sel_D

+

btarg_DX

pc_plus4
jr

pc_sel_F

jbtarg

always pc_plus4

btarg
jtarg

pc_sel_F

CSig Table
Stall, Bypass, &
Squash Logic

tpd

32-bit 2-to-1 Mux 4τ
32-bit 4-to-1 Mux 8τ
32-bit Adder 60τ
32-bit ALU 64τ
32-bit Multiplier 100τ
32-bit +4 Unit 30τ
ImmGen Unit 12τ

32-bit Reg Clk-to-Q 9τ
32-bit Reg Setup 10τ
Register File Read 25τ
Register File Setup 20τ
Memory Read 120τ
Memory Setup 120τ

Topic 12: Pipelined Processors 39

3. Five-Stage Pipelined Processor 3.7. Analyzing Performance

Estimating execution time

How long in units of τ will it take to execute the vector-vector add
program assuming n is 64?

Pseudo-Code

1 for i in range(n):
2 dest[i] = src0[i] + src1[i]

Assembly Code

1 # addr(dest[i]):x1, addr(src0[i]):x2
2 # addr(src1[i]):x3, n:x4
3 loop:
4 lw x5, 0(x1)
5 lw x6, 0(x2)
6 add x7, x5, x6
7 sw x7, 0(x3)
8 addi x1, x1, 4
9 addi x2, x2, 4

10 addi x3, x3, 4
11 addi x4, x4, -1
12 bne x4, x0, loop

Topic 12: Pipelined Processors 40

3. Five-Stage Pipelined Processor 3.7. Analyzing Performance

lw

lw

add

sw

addi

addi

addi

addi

bne

opA

opB

lw

lw

Results for vector-vector add example

Microarchitecture Inst/Prog Cycle/Inst Time/Cycle Exec Time

Single-Cycle 576 1.0 366 τ 210 kτ

Multi-Cycle 576 6.7 231 τ 886 kτ

2-Stage Pipelined 576 1.1 223 τ 143 kτ

5-Stage Pipelined 576

Topic 12: Pipelined Processors 41

