
ECE 2300 Digital Logic and Computer Organization Course Overview

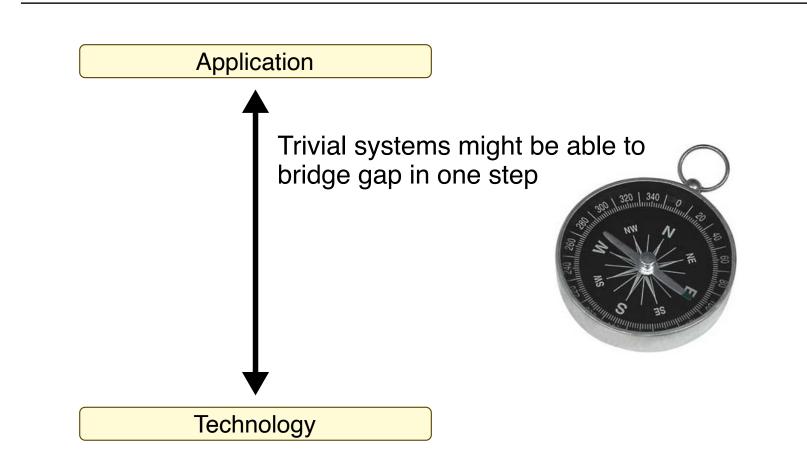
Christopher Batten

School of Electrical and Computer Engineering Cornell University

http://www.csl.cornell.edu/courses/ece2300

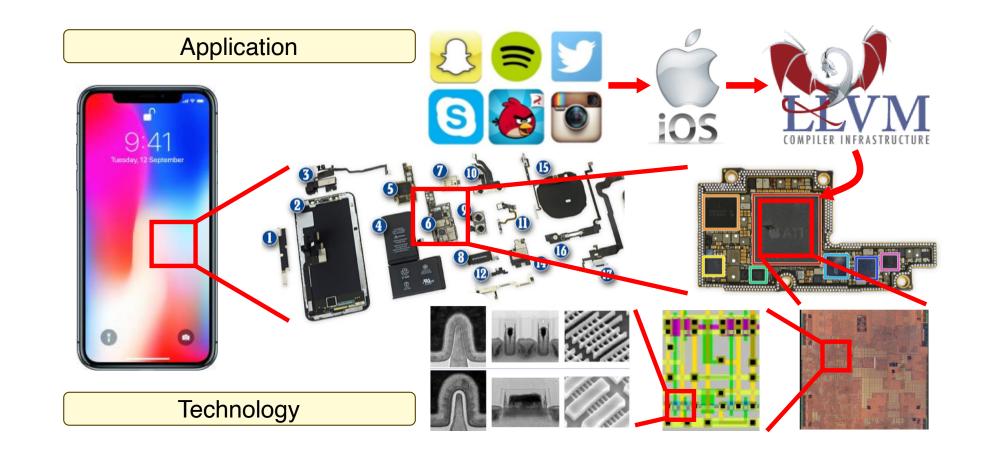
Agenda

What is Digital Logic and Computer Organization?

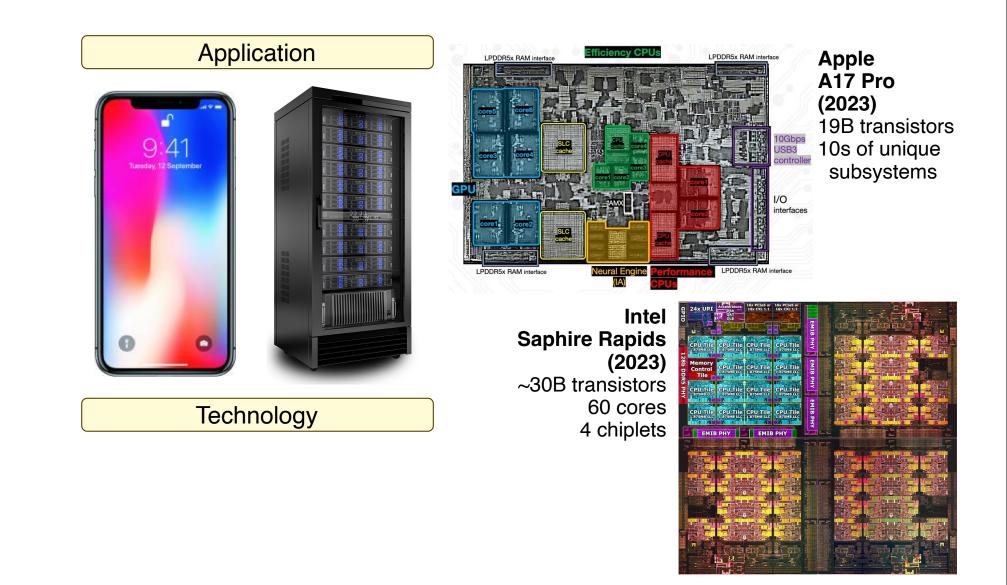

Trend 1: A New Era of Hardware Specialization

Trend 2: Hardware for AI and AI for Hardware

Course Logistics


Course Logistics

The Complexity of Modern Computer Systems

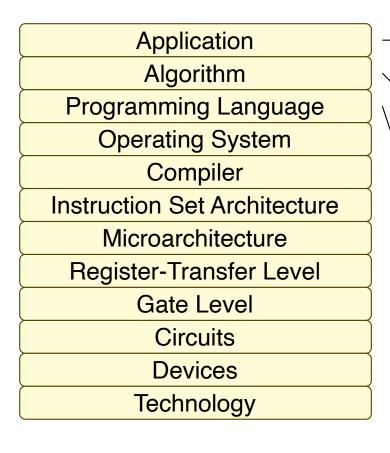

Course Logistics

The Complexity of Modern Computer Systems

Course Logistics

The Complexity of Modern Computer Systems

Course Logistics


The Computer Systems Stack

ApplicationAlgorithmProgramming LanguageOperating SystemCompilerInstruction Set ArchitectureMicroarchitectureRegister-Transfer LevelGate LevelCircuitsDevicesTechnology

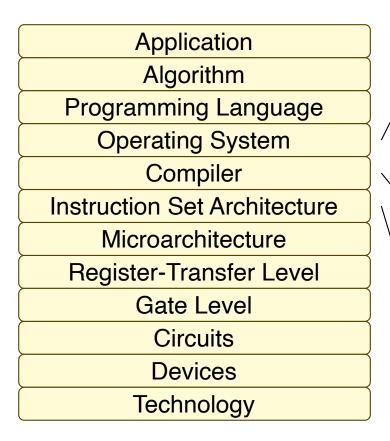
In its broadest definition, computer engineering is the development of the abstraction layers that allow us to execute information processing applications efficiently using available manufacturing technologies

Course Logistics

The Computer Systems Stack

Sort an array of numbers 2,6,3,8,4,5 -> 2,3,4,5,6,8

Out-of-place selection sort algorithm


- 1. Find minimum number in array
- 2. Move minimum number into output array
- 3. Repeat steps 1 and 2 until finished

C implementation of selection sort

```
void sort( int b[], int a[], int n ) {
  for ( int idx, k = 0; k < n; k++ ) {
    int min = 100;
    for ( int i = 0; i < n; i++ ) {
        if ( a[i] < min ) {
            min = a[i];
            idx = i;
            }
        }
        b[k] = min;
        a[idx] = 100;
    }
}</pre>
```

Course Logistics

The Computer Systems Stack

Mac OS X, Windows, Linux

Handles low-level hardware management

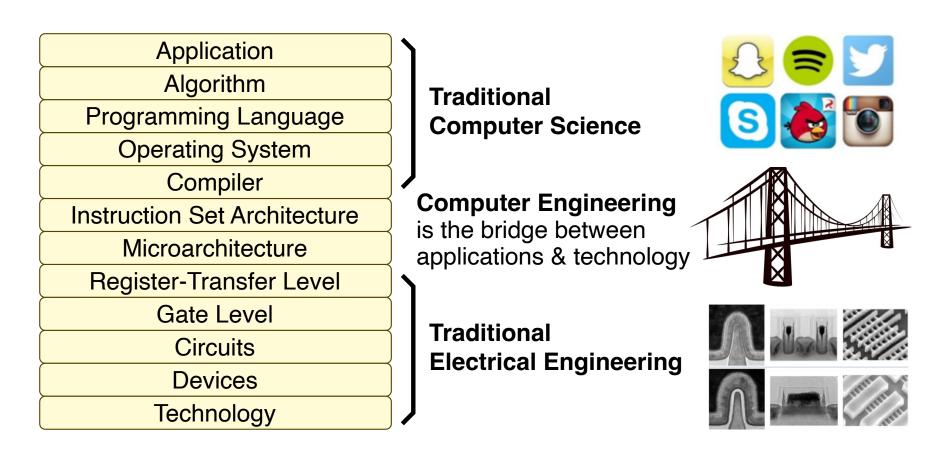
C Compiler

Transform programs into assembly

RISC-V Instruction Set

Instructions that machine executes

blez \$a2, done
move \$a7, \$zero
li \$t4, 99
move \$a4, \$a1
li \$a3, 99
lw \$a5, 0(\$a4)


Course Logistics

The Computer Systems Stack

Course Logistics

Abstraction in EE, CS, and CE

- Modularity: well defined behavior and interfaces simplify composition
- Hierarchy: recursively divide system into smaller and smaller modules
- Regularity: reuse common modules to reduce number of distinct modules

Course Logistics

ECE 2300 in the Computer Systems Stack

Application

Algorithm

Programming Language

Operating System

Compiler

Instruction Set Architecture

Microarchitecture

Register-Transfer Level

Gate Level

Circuits

Devices

Technology

CS 4410 Operating Systems CS 4420 Compilers ECE 2400 Computer Systems Programming ECE 3140 Embedded Systems

ECE 4760 Design with Microcontrollers ECE 4750 Computer Architecture

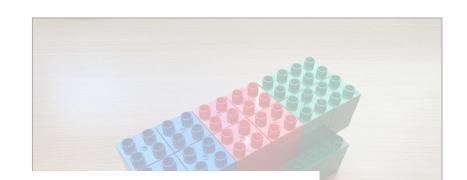
ECE 2300 Digital Logic & Computer Org ECE 4740 Digital VLSI Design

Related Graduate Courses

- ECE 5760 Advanced Microcontroller Design
- ECE 5750 Advanced Computer Architecture
- ECE 5745 Complex Digital ASIC Design
- ECE 5775 High-Level Design Automation

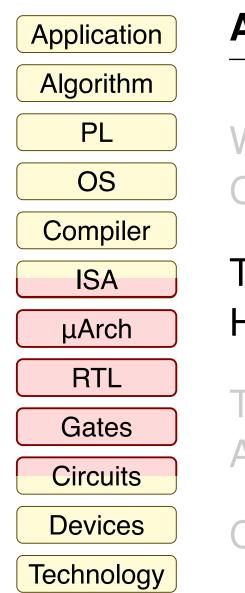
What is Digital Logic and Computer Org?

Trend 1: Specialization Era

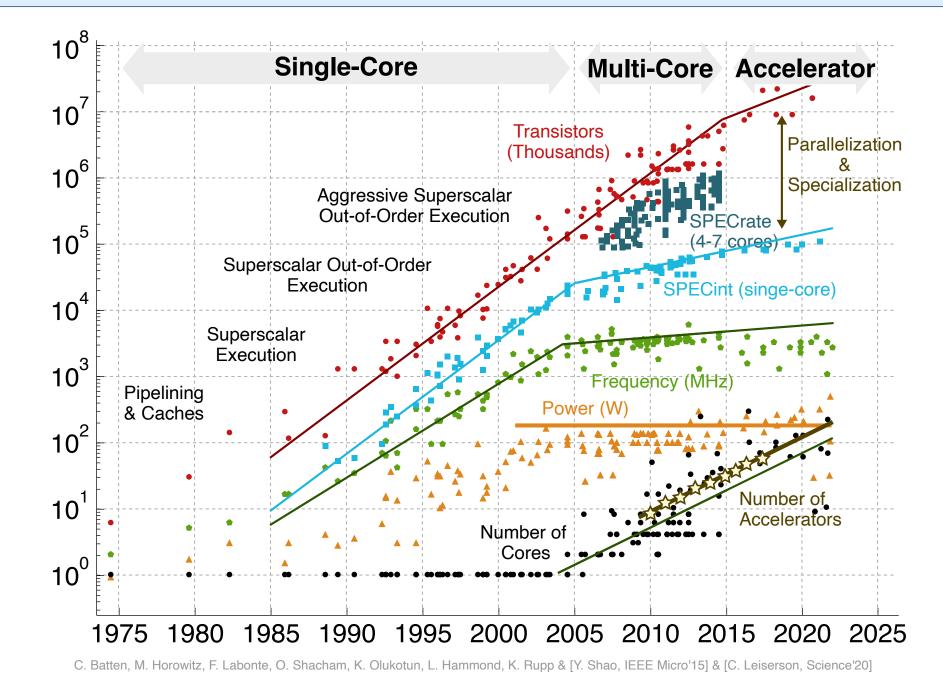

Trend 2: AI \leftrightarrow Hardware

Course Logistics

Activity #1: Exploring Abstraction



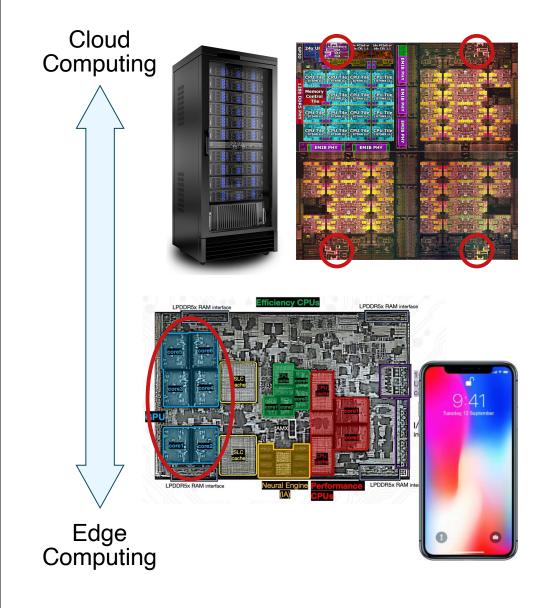
- Modularity: well defined behavior and interfaces simplify composition
- Hierarchy: recursively divide system into smaller and smaller modules
- Regularity: reuse common modules to reduce number of distinct modules


Agenda

What is Digital Logic and Computer Organization?

Trend 1: A New Era of Hardware Specialization

Trend 2: Hardware for AI and AI for Hardware


Course Logistics

ECE 2300

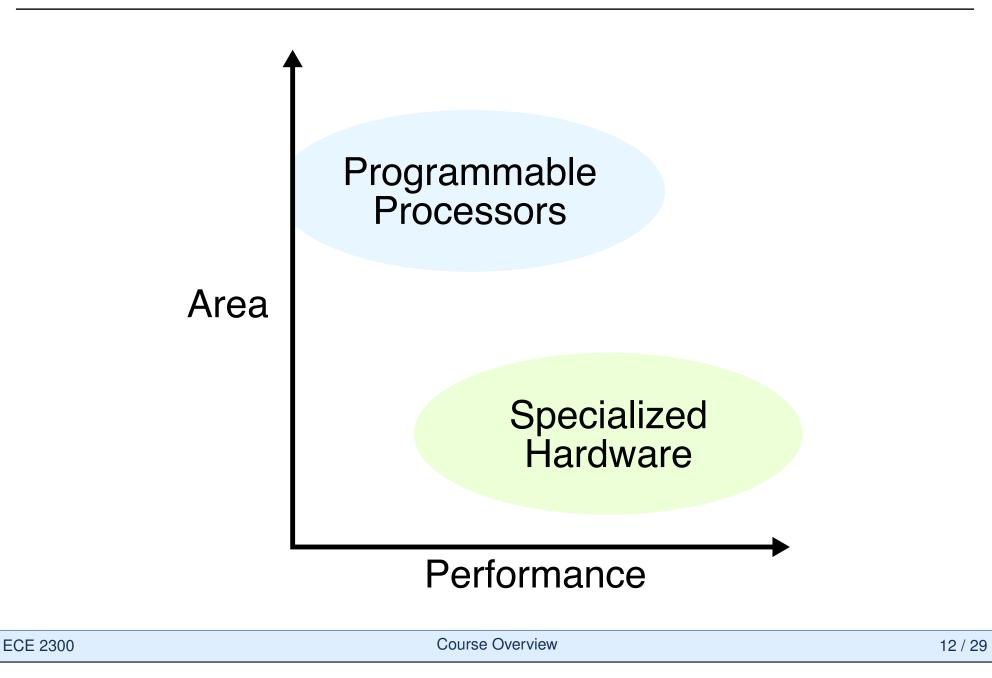
Trend 1: Specialization Era

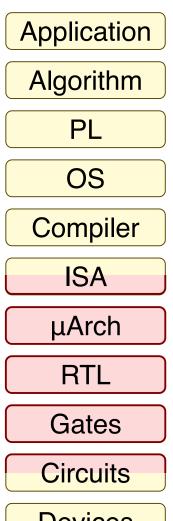
Specialization Across Cloud and Edge

Intel Saphire Rapids

- Accelerators for cryptography
- Accelerators for compression
- Accelerators for security
- Accelerators for networking
- Accelerators for wireless communication
- Accelerators for storage

Apple A17 Pro


- Accelerators for video decoding
- Accelerators for raytracing


Trend 1: Specialization Era

Trend 2: AI \leftrightarrow Hardware

Course Logistics

Activity #2: Specialization vs. Programmability

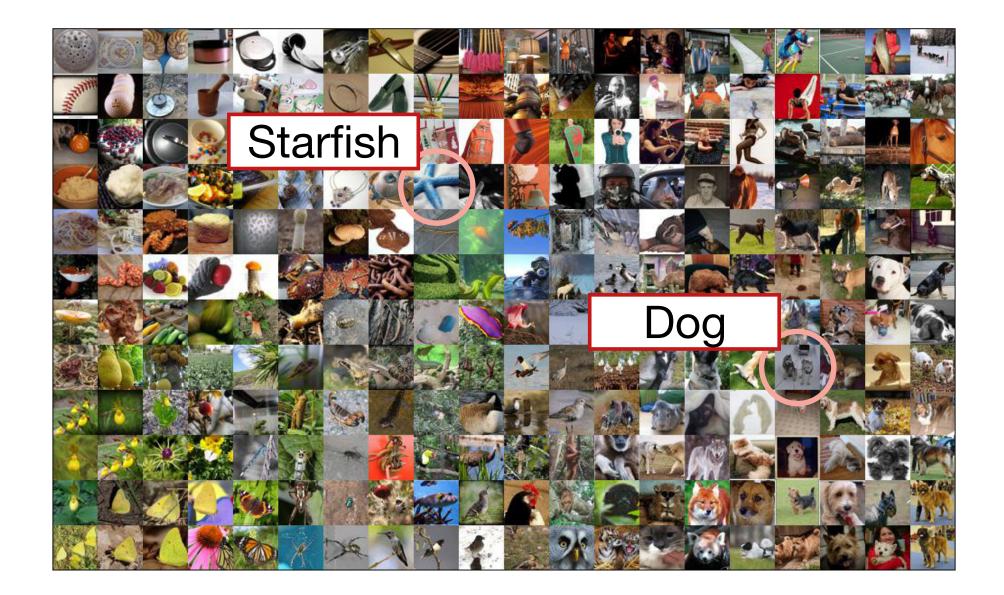
Agenda

What is Digital Logic and **Computer Organization?**

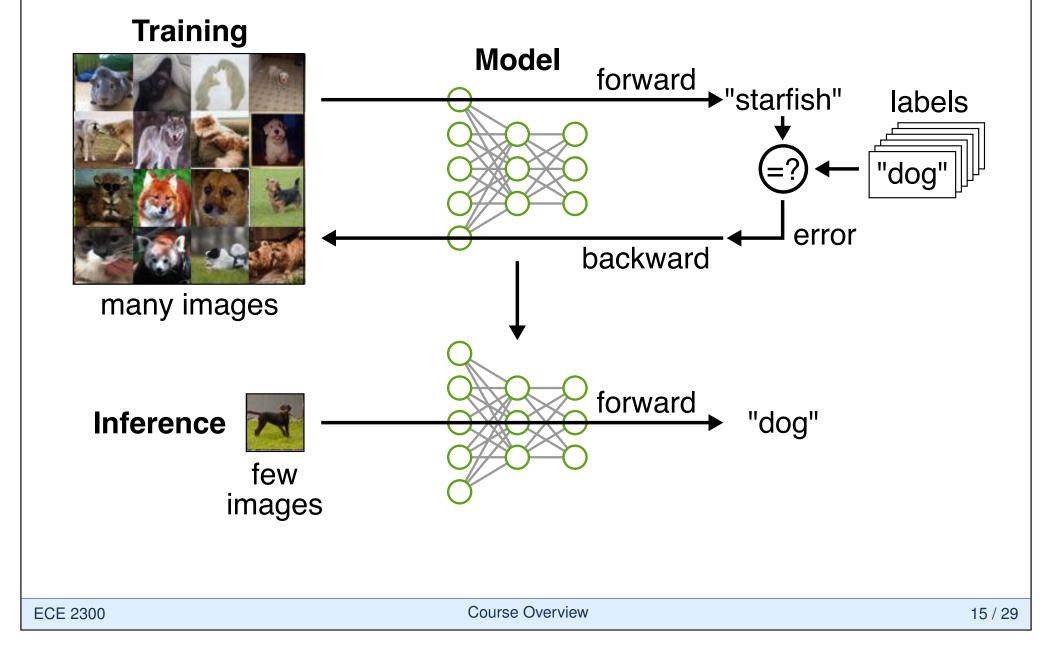
Trend 1: A New Era of Hardware Specialization

Technology

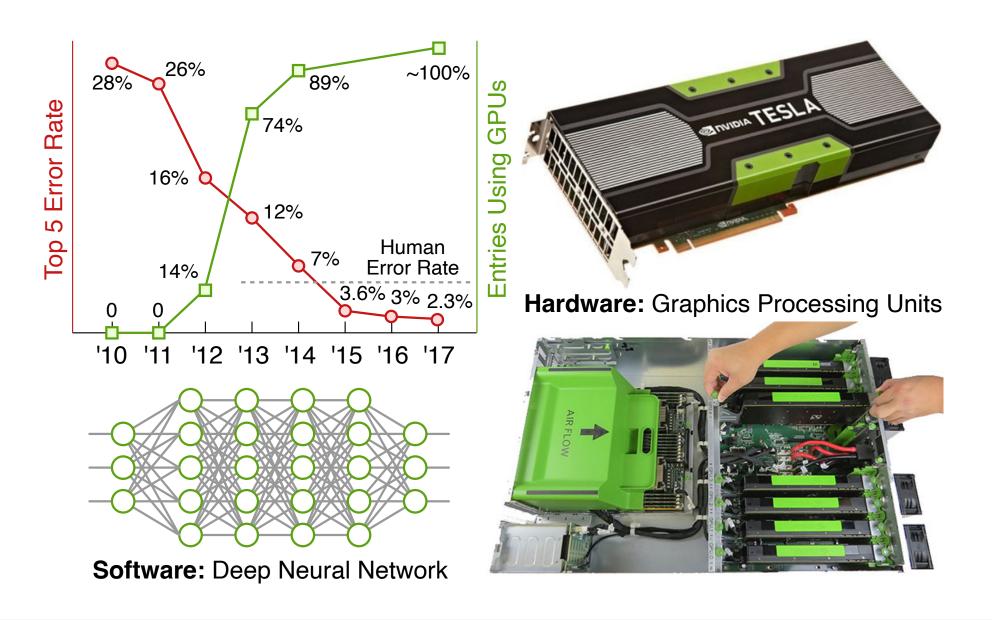
Trend 2: Hardware for AI and AI for Hardware

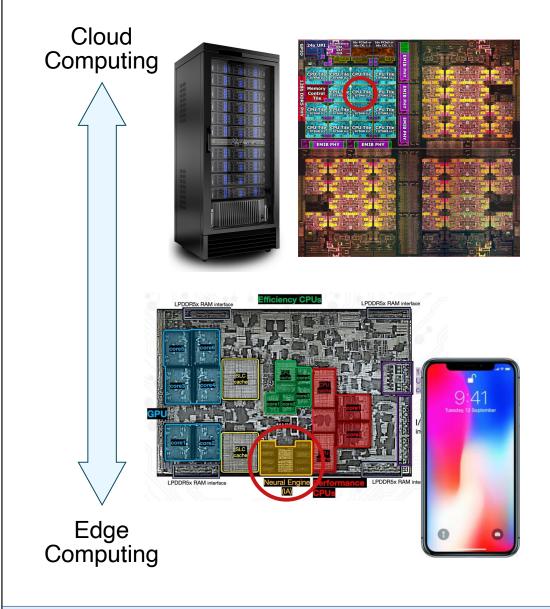

Course Logistics

Trend 1: Specialization Era


• Trend 2: Al \leftrightarrow Hardware •

Course Logistics


Image Recognition


Machine Learning (ML): Training vs. Inference

ImageNet Large-Scale Visual Recognition Challenge

Hardware for AI Across Cloud and Edge

Intel Saphire Rapids

Special instructions specifically designed for dense matrix multiplication in AI workloads

Apple A17 Pro

Custom "Neural Engine" specifically designed to accelerate AI workloads

Top-five software companies are all building Al accelerators

- Facebook: MTIA
- Amazon: Echo, Inferentia, Trainium
- Microsoft: Maia
- Google: Edge and cloud TPUs
- Apple: SoCs for phones and laptops

Chip startup ecosystem for Al accelerators is thriving!

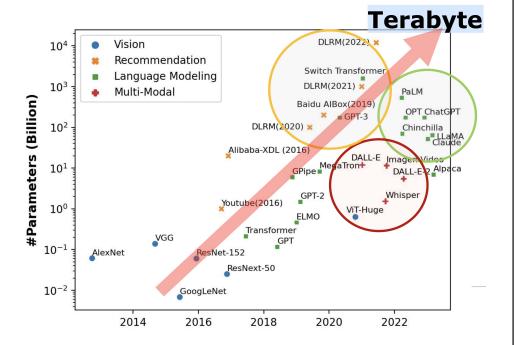
Graphcore

- Nervana
- Cerebras
- Wave Computing
- Horizon Robotics
- Cambricon
- DeePhi
- Esperanto
- SambaNova
- Eyeriss
- Tenstorrent
- Mythic
- ThinkForce
- Groq
- Lightmatter

Course Logistics

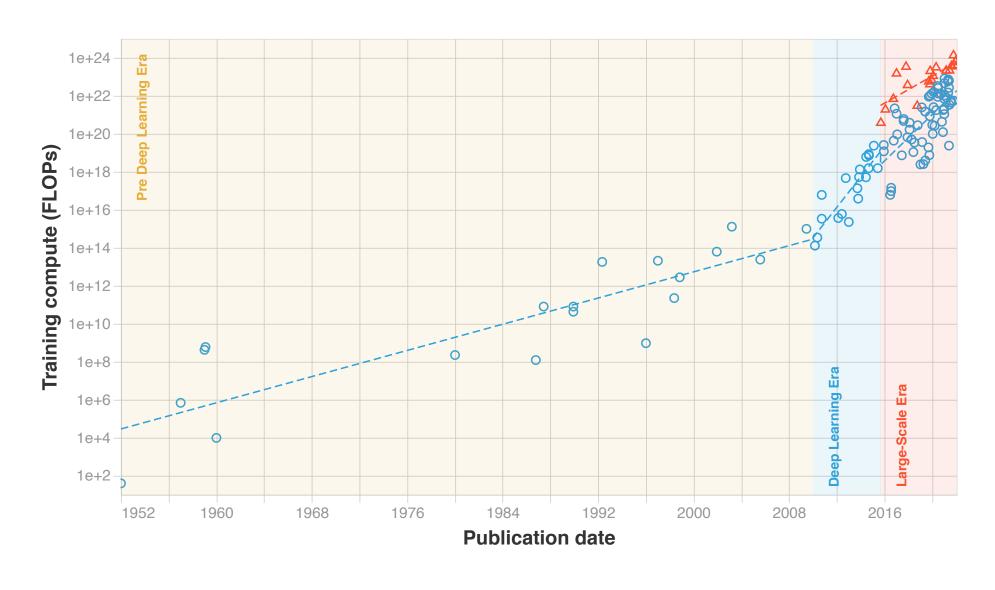
Rapidly Emerging Foundation Models

Can you explain what digital logic and computer organization are at a level suitable for a sophomore college student?


S Certainly!

Digital Logic

Digital logic is the foundation of all digital systems, including computers. It involves the study of circuits that process binary information—essentially 1s and 0s. These binary values correspond to two states: 'on' and 'off,' which can represent anything from simple true/false conditions to complex data.

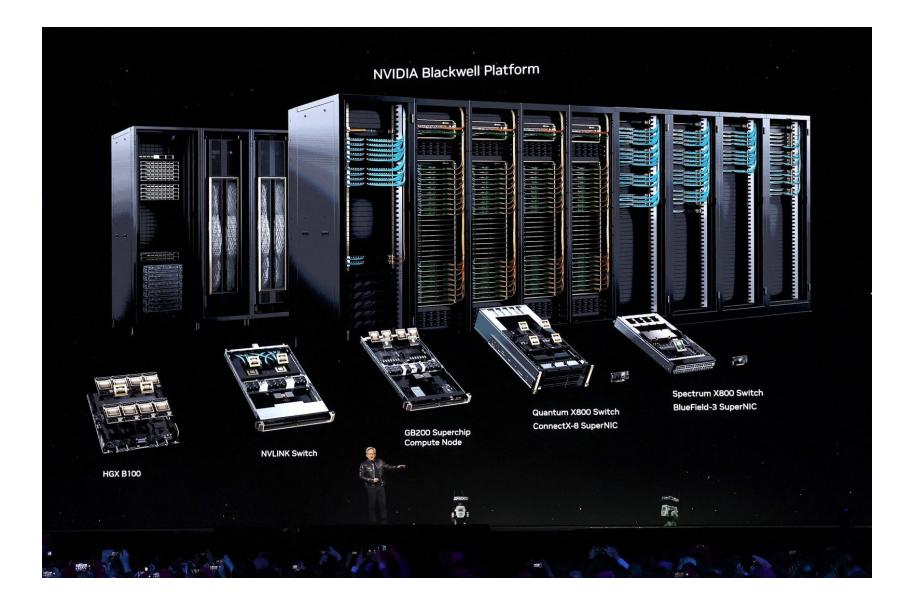

Key concepts in digital logic include:

- Boolean Algebra: The mathematical framework for working with binary variables and logic gates. It involves operations like AND, OR, and NOT, which are the building blocks of digital circuits.
- 2. Logic Gates: The basic components that perform operations on one or more binary inputs to produce a binary output. The main types are:
 - AND Gate: Outputs 1 only if all inputs are 1.
 - OR Gate: Outputs 1 if at least one input is 1.
 - NOT Gate: Inverts the input (i.e., 1 becomes 0 and vice versa).
- 3. **Combinational Logic**: Circuits where the output is determined solely by the current inputs. Examples include adders, multiplexers, and decoders.
- Sequential Logic: Circuits where the output depends on both current inputs and previous states. This introduces the concept of memory and timing. Examples include flip-flops, registers, and counters.

Foundation models now use 100s of billions of parameters placing tremendous demands on computing systems for inference

Compute Required for Training Foundation Models

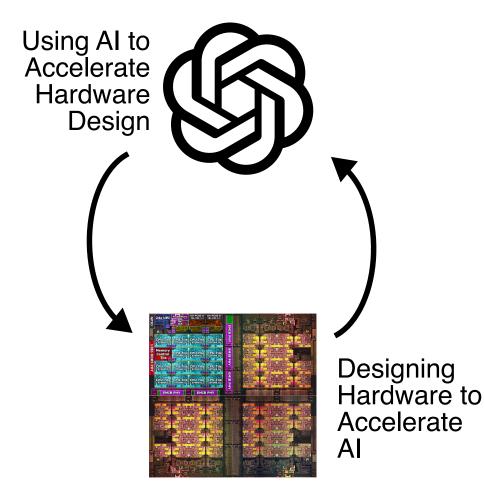
Adapted from [J. Sevilla et al., "Compute Trends Across Three Eras of ML," IJCNN'22.]


What is Digital Logic and Computer Org?

Trend 1: Specialization Era

• Trend 2: Al \leftrightarrow Hardware •

Course Logistics


NVIDIA Blackwell AI Supercomputers

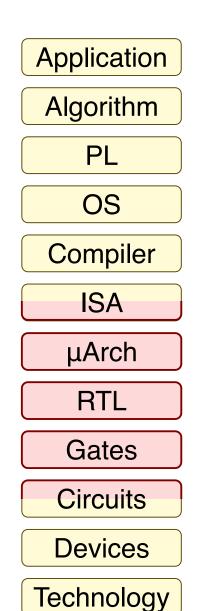
Trend 1: Specialization Era

• Trend 2: Al \leftrightarrow Hardware •

$\textbf{AI} \leftrightarrow \textbf{Hardware}$

Please implement a one-bit full adder in Verilog.

B Here's an implementation of a one-bit full adder in Verilog:


verilog		ြာ Copy code				
module full_adder	• (
input A,	// Input bit A					
input B,	// Input bit B					
input Cin,	// Carry-in bit					
output Sum,	// Sum output					
output Cout	// Carry-out bit					
);						
// Sum is cal	// Sum is calculated as A XOR B XOR Cin					
assign Sum =	assign Sum = A ^ B ^ Cin;					
// Carry-out	// Carry—out is calculated as (A AND B) OR (Cin AND (A XOR B))					
assign Cout = (A & B) (Cin & (A ^ B));						

endmodule

Explanation:

- Sum: The sum of the bits *A*, *B*, and the carry-in *Cin* is computed using the XOR operation.
- Cout: The carry-out is computed by summing the carry from the inputs A and B and the carry propagated by Cin.

This simple Verilog module can be instantiated in a larger design to perform multi-bit additions. If you need any more details or have additional questions, feel free to ask!

Agenda

What is Digital Logic and Computer Organization?

Trend 1: A New Era of Hardware Specialization

Trend 2: Hardware for AI and AI for Hardware

Course Logistics

Course Staff

- **Head TA:** Derin Ozturk
- Graduate TAs: Mahathi Andavolu, Vesal Bakhtazad Aidan McNay, Bolong Tan Klora Wang, Zichao Yue
- Undergraduate TAs: Mohammad Al-Labadi, Anjelica Bian Dyllan Hofflich, Zach Jessup Zarif Karim, Nita Kattimani Amy Le, Nicole Li, Kevin Rodriguez Paige Shelton, Max Trager Justin Wong, Steven Yu, Wei Zheng

Algorithm

PL

OS

Compiler

ISA

μArch

RTL

Gates

Circuits

Devices

Technology

Course Structure

Part 1: Combinational Digital Logic

 transistors; logic gates; Boolean algebra; logic minization; decoders; multiplexors; arithmetic units

Part 2: Sequential Digital Logic

Iatches and flip-flops; Moore and Mealy finite-state machines; counters; shift registers; memory arrays

Part 3: Computer Processor Organization

 instruction set architecture; arithmetic, memory, control instructions; single-cycle processor; FSM multi-cycle processor; pipelined processor

Part 4: Computer Memory Organization

main memory; virtual memory; caches

Course Format and Procedures

- Lectures: students expected to attend all lectures; we will start promptly at 11:40am; use of cellular phones and laptops during lecutre is not allowed
- Quizzes: five minute pencil-and-paper quizzes at beginning of some lectures; no make-up quizzes; lowest quiz score is dropped; instructor goes through solution in lecture
- Discussion Section: three optional sections on Fridays in 225 Upson Hall; relatively informal focusing on faciliting students ability to complete lab assignments; students can sign up for a seat for each section on Canvas
- Readings: Harris and Harris, "Digital Design and Computer Architecture: RISC-V Edition," 2021; available through CAMP
- Practice Problems: no graded homework; practice problems distributed throughout the semester to help students put the concepts learned in lecture and reading into practice; solutions will not be provided; students can discuss their solutions with other students or instructors during office hours
- **Exams:** two prelims, final exam

Course Logistics

Programming Assignments

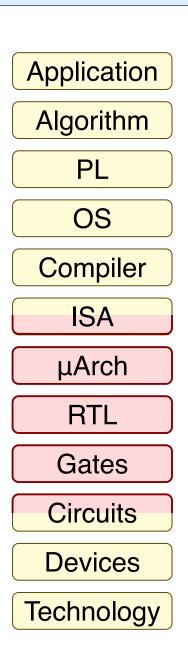
Labs 1–3: Digital Logic

- Lab 1: 5-bit Seven-Segment Display
- Lab 2: Addition/Multiplication Calculator
- Lab 3: Music Player

Labs 4–5: Computer Organization

- ▶ Lab 4: Single-Cycle and FSM Processor
- Lab 5: RISC-V Assembly Programming

Labs involve two parts


- Simulation part involves students writing and testing their designs in Verilog using open-source simulators and is meant to be completed using the ecelinux servers (students still go to lab to work on Verilog design!)
- FPGA part involves students synthesizing their designs using commercial tools and is meant to be completed during their assigned lab session

Course Logistics

Course Schedule

		Monday	Tuesday	Wednesday	Thursday	Friday
11:00 AM	 11:15 AM					-
11:15 AM	 11:30 AM					
11:30 AM	 11:45 AM	Lab				
11:45 AM	 12:00 PM	Session 1				
12:00 PM	 12:15 PM	11:15-2:15pm	Lecture		Lecture	
12:15 PM	 12:30 PM	238 Phillips	11:40-12:55pm		11:40-12:55pm	
12:30 PM	 12:45 PM		155 Olin		155 Olin	
12:45 PM	 1:00 PM					
1:00 PM	 1:15 PM					
1:15 PM	 1:30 PM					Optional
1:30 PM	 1:45 PM					Section 1
1:45 PM	 2:00 PM		Lab			1:15-2:15pm
2:00 PM	 2:15 PM		Session 3			255 Upson
2:15 PM	 2:30 PM		1:25-4:25pm			Optional
2:30 PM	 2:45 PM		238 Phillips			Section 2
2:45 PM	 3:00 PM					1:15-2:15pm
3:00 PM	 3:15 PM					255 Upson
3:15 PM	 3:30 PM					Optional
3:30 PM	 3:45 PM					Section 3
3:45 PM	 4:00 PM					1:15-2:15pm
4:00 PM	 4:15 PM					255 Upson
4:15 PM	 4:30 PM					
4:30 PM	 4:45 PM					Prof Batten
4:45 PM	 5:00 PM					Office Hours
5:00 PM	 5:15 PM					4:30-5:30pm
5:15 PM	 5:30 PM	Office	Office		Office	323 Rhodes
5:30 PM	 5:45 PM	Hours 1	Hours 2		Hours 5	
5:45 PM	 6:00 PM	5:00-7:00pm	5:00-7:00pm	Office	5:00-7:00pm	
6:00 PM	 6:15 PM	203 Phillips	203 Phillips	Hours 4	203 Phillips	
6:15 PM	 6:30 PM			5:30-7:30pm	·	
6:30 PM	 6:45 PM			307 Phillips		
6:45 PM	 7:00 PM					
7:00 PM	 7:15 PM					
7:15 PM	 7:30 PM					
7:30 PM	 7:45 PM					
7:45 PM	 8:00 PM	Lab	Office	Lab		
8:00 PM	 8:15 PM	Session 2	Hours 3	Session 4		
8:15 PM	 8:30 PM	7:30-10:30pm	7:30-9:30pm	7:30-10:30pm		
8:30 PM	 8:45 PM	238 Phillips	203 Phillips	238 Phillips		
8:45 PM	 9:00 PM		or			
9:00 PM	 9:15 PM		307 Phillips			

Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
26	27 Overview	28	29 T01 Transistors	30 S01 Linux Verilog	31	Sep 1
2 Labor Day	3 T02 Logic Gates	4	5 T03 Boolean Algebra	6 S02 Verilog GL Design	7	8
9	10 T03 Boolean Algebra	11 Lab 1.1 Display	12 T04 Comb Blocks	13 S03 Verilog Testing	14	15
16	17 T05 Arithmetic Units	18 Display	19 T05 Arithmetic Units	20 S04 Lab 2 Head Start	21	22
23	24 T06 Latches Flip-Flops	25 Lab 2.1 Calculator	26 T06 Latches Flip-Flops	27 S05 PBL	28	29
30	Oct 1 T07 FSMs	2 → Lab 2.2 Calculator	3 T07 FSMs	4 S06 Verilog Latches/FFs	5	6
7 Prelim #1	8 T08 Sequential Blocks	9	10 T09 Memory Arrays	11 No Section	12	13
14 Fall Break	15 Fall Break	16 L ab 3.1 Timer	17 T10 ISA	18 S07 Lab 4 Head Start	19	20
21 Drop Deadline	22 T11 Single Cycle Proc	23 ⊥ab 3.2 Timer	24 T11 Single Cycle Proc	25 S08 Prelim Review	26	27

Take-Away Points

- Digital logic transforms low-level circuits into hardware blocks dedicated to processing, storing, and moving digital data; and computer organization transforms these hardware blocks into programmable computing systems capable of executing high-level software.
- We are now in the accelerator era which requires carefully managing the tension between specialization and programmability; and we are seeing a sea change at the intersection of AI and hardware design.
- This course will serve as a foundation for more advanced courses in embedded systems and computer architecture so that students can eventually contribute to this new era!