
ECE 2300 Digital Logic and Computer Organization, Fall 2025

Discussion Section 9 – Single-Cycle Processors

revision: 2025-11-07-12-34

In this discussion section, you will estimate the time to execute a vector-vector-add program on the
TinyRV1 single-cycle processor we studied in lecture. The vector-vector-add program takes as input
two arrays of 4B numbers, adds corresponding array elements, and outputs a third array with the
results. Here is the pseudo-code for our vector-vector-add program.

1 for i in range(n):
2 dest[i] = src0[i] + src1[i]

We will be using the following first-order equation to estimate performance:

Time
Program

=
Instructions

Program
× Avg Cycles

Instruction
× Time

Cycle

So our quantitative performance analysis will involve filling in the following table.

Inst/Prog Cycles/Inst Time/Cycle Time/Prog

vvadd on TinyRV1 Scycle Processor

For a single-cycle processor the average cycles per instruction is just one (hopefully no surprises
there!). We will be using both a paper worksheet and the instruction-set simulator from the previous
discussion section to estimate the number of instructions per program. We will use paper analysis to
estimate the time per cycle.

Problem 1. Estimating Instructions per Program with Worksheet

Use the worksheet on the following page to estimate the number of instructions for the assembly
program assuming n is four (i.e., the length of the input and output arrays is four elements). The
number of instructions executed is just the total number of Xs next the assembly code.

222 222 00 addi x1, x0, 256 # x1 holds base address of src0
222 222 04 addi x2, x0, 272 # x2 holds base address of src1
222 222 08 addi x3, x0, 288 # x3 holds base address of dest
222 222 12 addi x4, x0, 4 # x4 holds size of arrays
222 222 16 lw x5, 0(x1) # x5 = src0[i] <--------.
222 222 20 lw x6, 0(x2) # x6 = src1[i] |
222 222 24 add x7, x5, x6 # x7 = x5 + x6 |
222 222 28 sw x7, 0(x3) # dest[i] = x7 |
222 222 32 addi x1, x1, 4 # next element of src0 |
222 222 36 addi x2, x2, 4 # next element of src1 |
222 222 40 addi x3, x3, 4 # next element of dest |
222 222 44 addi x4, x4, -1 # x4 = x4 - 1 |
222 222 48 bne x4, x0, 16 # goto 16 if x4 != 0 ---'
222 222 52 addi x0, x0, 0 # nop
222 222 56 addi x0, x0, 0 # nop

Memory

0

4

8

12

16

20

24

28

32

· · ·

256

260

264

268

272

276

280

284

288

292

296

300

· · ·

508

Program Counter

Registers

x0

x1

x2

x3

x4

x5

x6

x7

x8

· · ·

x31

2

Problem 2. Estimating Instructions per Program with ISA Simulator

Let’s try executing the same program with the ISA simulator we used in the previous discussion
section. Log into ecelinux using VS Code and use the following commands to clone the repo, build
the ISA simulator, and look at the provided assembly code for our vector-vector-add program

% source setup-ece2300.sh
% mkdir -p $HOME/ece2300
% cd $HOME/ece2300
% git clone git@github.com:cornell-ece2300/ece2300-sec09-pbl-scycle-proc sec09
% mkdir sec09/build
% cd sec09/build
% ../configure
% make proc-isa-sim
% code ../lab4/asm/vvadd.asm

Notice how we are using a label to specify the branch target and we are initializing the input arrays
using the .data and .word assembler directives. Let’s now assemble this assembly program into a
machine program.

% cd $HOME/ece2300/sec09/build
% ../scripts/tinyrv1-assemble -o vvadd.bin ../lab4/asm/vvadd.asm
% cat vvadd.bin

Finally, let’s run the machine program (i.e., the TinyRV1 binary) on our ISA simulator and visualize
its execution.

% cd $HOME/ece2300/sec09/build
% ./proc-isa-sim +bin=vvadd.bin +tui

Step through the execution and confirm the total number of instructions executed in the program is
exactly the same as what you calculated using your worksheet.

3

Problem 3. Estimating minimum TC (i.e., clock period, cycle time, or time/cycle)

3. Analyzing Performance

Estimating minimum TC (i.e., clock period, cycle time, or time/cycle)

pc

regfile
(read)

regfile
(write)

pc_plus4

+4

al
u

[24:20]

[19:15]

imem_
addr

To control unit

imem_
rdata

[11:7]

op2_sel

imm
gen[31:7]

m
ul

wb_sel

dmem_
addr

dmem_
rdata

dmem_
wdata

imm_type

rf_wen

+

pc_sel

jalbr_targ

jr_targ

alu_func

eq

tpd

32-bit 2-to-1 Mux 4t
32-bit 4-to-1 Mux 8t
32-bit Adder 60t
32-bit ALU 64t
32-bit Multiplier 100t
32-bit +4 Unit 30t
ImmGen Unit 12t
32-bit Reg (tcq) 9t
Register File Read 25t
Memory Read 120t

32-bit Reg (tsetup) 10t
Register File (tsetup) 20t
Memory (tsetup) 120t

Topic 10: Single-Cycle Processors 16

4

