ECE 2300 Digital Logic and Computer Organization, Fall 2025
Discussion Section 9 — Single-Cycle Processors

revision: 2025-11-07-12-34

In this discussion section, you will estimate the time to execute a vector-vector-add program on the
TinyRV1 single-cycle processor we studied in lecture. The vector-vector-add program takes as input
two arrays of 4B numbers, adds corresponding array elements, and outputs a third array with the
results. Here is the pseudo-code for our vector-vector-add program.

1 for i in range(n):
2 dest[i] = srcO[i] + srci[i]

We will be using the following first-order equation to estimate performance:

Time Instructions AvgCycles — Time

Program Program ~ Instruction = Cycle

So our quantitative performance analysis will involve filling in the following table.

Inst/Prog Cycles/Inst Time/Cycle Time/Prog

vvadd on TinyRV1 Scycle Processor

For a single-cycle processor the average cycles per instruction is just one (hopefully no surprises
there!). We will be using both a paper worksheet and the instruction-set simulator from the previous
discussion section to estimate the number of instructions per program. We will use paper analysis to
estimate the time per cycle.

Problem 1. Estimating Instructions per Program with Worksheet

Use the worksheet on the following page to estimate the number of instructions for the assembly
program assuming n is four (i.e., the length of the input and output arrays is four elements). The
number of instructions executed is just the total number of Xs next the assembly code.

addi
addi
addi
addi
1w
1w
add
sSW
addi
addi
addi
addi
bne
addi
addi

x1,
X2,
x3,
x4,
x5,
x6,
X7,
X7,
x1,
X2,
x3,
x4,
x4,
x0,
x0,

x0,
x0,
x0,
x0,

256
272
288
4

0(x1)
0(x2)

x5,

x6

0(x3)

x1,
X2,
x3,
x4,
x0,
x0,
x0,

4

-1
16

o

HFHEHFEHHFEHHFEHFHFHFHHHHH

x1
x2
x3
x4
x5
x6
X7
des
nex
nex
nex
x4
got
nop
nop

holds base address of srcO
holds base address of srci
holds base address of dest

holds size of arrays

= srcO[i] <-------—-
srci[i]

= xb + x6

t[i] = x7

t element of srcO

t element of srci

t element of dest
=x4 -1

o 16 if x4 '= 0 ---

Program Counter

Registers

x31

x8
x7
x6
x5
x4
x3
x2
x1
x0

508

300
296
292
288
284
280
276
272
268
264
260
256

32
28
24
20
16
12

Memory

Problem 2. Estimating Instructions per Program with ISA Simulator

Let’s try executing the same program with the ISA simulator we used in the previous discussion
section. Log into ecelinux using VS Code and use the following commands to clone the repo, build
the ISA simulator, and look at the provided assembly code for our vector-vector-add program

% source setup-ece2300.sh

% mkdir -p $HOME/ece2300

% cd $HOME/ece2300

% git clone git@github.com:cornell-ece2300/ece2300-sec09-pbl-scycle-proc sec09
% mkdir sec09/build

% cd sec09/build

% ../configure

% make proc-isa-sim

% code ../lab4/asm/vvadd.asm

Notice how we are using a label to specify the branch target and we are initializing the input arrays
using the .data and .word assembler directives. Let’s now assemble this assembly program into a
machine program.

% cd $HOME/ece2300/sec09/build
% ../scripts/tinyrvi-assemble -o vvadd.bin ../lab4/asm/vvadd.asm
% cat vvadd.bin

Finally, let’s run the machine program (i.e., the TinyRV1 binary) on our ISA simulator and visualize
its execution.

% cd $HOME/ece2300/sec09/build
% ./proc-isa-sim +bin=vvadd.bin +tui

Step through the execution and confirm the total number of instructions executed in the program is
exactly the same as what you calculated using your worksheet.

rt_wen

wb_sel ! l

— regfile
—> (write)
' —>|

dmem_

Problem 3. Estimating minimum T (i.e., clock period, cycle time, or time/cycle)
4 To control unit
jr_targ ‘\
=
jalbr_targ /E
d eq
pc_plusd e regfile =\5
read . 4
o] (2 {5
» 14 i
" [
|, —>imm alu_func
vl pe gen | L)
imm_type T +
imem_ imem_ dmem_ dmem_
addr} rdata wdata | addr}

pd
32-bit 2-to-1 Mux 4T
32-bit 4-to-1 Mux 8T
32-bit Adder 60T
32-bit ALU 64T
32-bit Multiplier 100t
32-bit +4 Unit 30T
ImmGen Unit 121
32-bit Reg (tc;) 9t
Register File Read 25T
Memory Read 120t
32-bit Reg (tsetup) 107
Register File (tsetup) 20T
Memory (tsetup) 120t

rdata

