
Lecture 8:

Spring 2025

ECE 2300
Digital Logic & Computer Organization

More Verilog
Finite State Machines

1

Lecture 8:

Announcements

2

• Lab 2 released

• HW 3 due tomorrow

• Prelim 1
– Thursday Feb 27th, 1:25-2:40pm in class

• closed book, closed notes, closed Internet
– Coverage: Lectures 1~6, first part of Lecture 7

• Binary number, Boolean algebra, CMOS, combinational logic,
sequential logic

– A sample prelim exam will be posted tomorrow
– A TA-led review session will be scheduled (&

recorded) on Feb 24

Lecture 8: 3

• Continuous assignments apply to combinational
logic only

• Multiple continuous assignments happen in
parallel; the order does not matter

wire a, b, c, d;
assign c = a & d; // Uses d, even though d is assigned later
assign d = ~b;

Recap: Continuous Assignments in Verilog

Lecture 8: 4

Exercise: Verilog Circuit Modeling

• Which of the following Verilog code snippets
infer sequential logic

input clk, d;
output q;
assign q = clk & d;

(b)(a) (c)

input clk, d;
reg q;
always @ (clk)
begin
 if (clk)
 q = d;
end

// D latch?

input clk, d;
reg q;
always @ (clk, d)
begin
 q = clk & d;
end

Lecture 8:

Recap: Sequential Logic with
Always Blocks

5

reg Q;

always @(clk, D)
begin
if (clk)

Q = D;
end

Sequential logic can ONLY be modeled using always blocks

D latch DFF

QD

C

QD

CLK

Q is declared as a "reg" since it appears on the left-hand side of
a procedural assignment

reg Q;

always @(posedge clk)
begin
Q = D;

end

Lecture 8: 6

Procedural Assignments in Always Blocks
• Always blocks contain a set of procedural

assignments (blocking or nonblocking)

Simulation behavior:

– Blocking assignments (=) execute RHS sequentially
within the always block, completing each assignment to
LHS before moving to the next

– Non-blocking assignments (<=) execute RHS in parallel
and the assignments are scheduled to update LHS at
the end of the always block

Lecture 8: 7

Blocking Assignments
• Left-hand side (LHS) = Right-hand side (RHS)

input A, B;
reg Y, Z;
always @ (posedge clk)
begin

Y = A & B;
Z = Y;

end

When a reg (Y here) is assigned in a
blocking assignment (Y=A&B), employ its
D input (i.e., A&B) for connection in RHS
of a subsequent assignment (Z=Y)

Ynext ß A & B
Znext ß (Ynext = A & B) // use “new” Y

Simulation behavior Synthesized circuit

• RHS evaluated sequentially
• Assignment to LHS is immediate

Y and Z are inferred as FFs
here, since the always block
is sensitive to the clock edge

ZY

A
B

D Q D Q

ZY

Lecture 8: 8

Nonblocking Assignments
• Left-hand side (LHS) <= Right-hand side (RHS)

Znext ß Y // use “old” Y
Ynext ß A & B

Simulation behavior Synthesized circuit

When a reg (Y here) is assigned in a
nonblocking assignment (Y<=A&B),
employ its Q output for connection in
RHS of another assignment (Z<=Y)

• RHS evaluated in parallel (order doesn’t
matter)

• Assignment to LHS is delayed until
the end of the always block

input A, B;
reg Y, Z;
always @ (posedge clk)
begin

Y <= A & B;
Z <= Y;

end

Y and Z are inferred as FFs
here, since the always block
is sensitive to the clock edge

B
A

ZY
D Q D Q

Lecture 8:

Finite State Machine

• A Finite State Machine (FSM) is an abstract
representation of a sequential circuit
– The state embodies the condition of the system at this

particular time
– The combinational logic determines the output and

next state values
– The output values may depend only on the current

state value (Moore), or on the current state and input
values (Mealy)

9

Next
State

Combinational
Logic

Inputs Outputs

State
Current
State

Lecture 8:

Elements of an FSM
1. A finite number of inputs
2. A finite number of outputs
3. A finite number of states
4. A specification of all

state transitions

Can be described by a state diagram

10

Next
State

Combinational
Logic

Inputs Outputs

State

Current
State

• Inputs and current state determine state transitions
• Output changes determined by changes in

• Current state (More FSM), or
• Current state + inputs (Mealy FSM)

Lecture 8:

State Diagram
• Visual specification of an FSM

– Bubble for every state
– Arcs showing state transitions
– Input values shown on the arcs
– Output values shown within the bubbles (Moore) or

on the arcs (Mealy)
– Clock input implicit (always present, triggering state

transitions)

11

1 1

S0
0

S1
0

S2
1

0 1Reset

00
1/0 1/1

S0 S1

0/0Reset

0/0

Moore FSM Example Mealy FSM Example

Lecture 8:

Example: Moore State Diagram

• 1 input (1 bit), 1 output (1 bit), 3 states
• Bubble for each state
• State transitions (arcs) for each input value
• Input values on the arcs
• Output values within the bubbles
• Starts at S0 when Reset asserted

12

1 1

S0
0

S1
0

S2
1

0 1Reset

00

Moore FSM
Example

Lecture 8:

Example: Mealy State Diagram

13

• 1 input (1 bit), 1 output (1 bit), 2 states
• Bubble for each state
• State transitions (arcs) for each input value
• Input values on the arcs (first number)
• Output values on the arcs (second number)
• Starts at S0 when Reset asserted

1/0 1/1

S0 S1

0/0Reset

0/0
Mealy FSM
Example

Lecture 8:

FSM Design Procedure
(1) Understand the problem statement and

determine inputs and outputs

(2) Identify states and create a state diagram

(3) Determine the number of required FFs

(4) Implement combinational logic for outputs
and next state

(5) Simulate the circuit to test its operation
14

This
lecture

Lecture 8:

Example FSM: Pattern Detector
• Monitors the input, and outputs a 1 whenever a

specified input pattern is detected

• Example: Output a 1 whenever 111 is detected
on the input over 3 consecutive clock cycles
– Overlapping patterns also detected (1111...)

• Input In (one bit)
• Output Out (one bit)
• Reset causes FSM to start in initial state
• Clock input not shown (always present)

15

Lecture 8:

111 Pattern Detector: Moore State Diagram

16

• Output a 1 whenever 111 is detected on the input over 3 consecutive
clock cycles (overlapping pattern also detected)

Lecture 8:

111 Pattern Detector: Mealy State Diagram

17

• Output a 1 whenever 111 is detected on the input over 3 consecutive
clock cycles (overlapping pattern also detected)

Lecture 8:

Example FSM: Pushbutton Lock

18

• Two pushbutton inputs, X1 and X2
• One output, UL (“Unlock”)

• UL = 1: the lock is unlocked, when X1 is pushed,
followed by X2 being pushed twice (X1, X2, X2)

• Represent X1 and X2 as two-bit input
– 00: neither button pushed
– 10: X1 pushed
– 01: X2 pushed
– 11: both pushed, reset the lock (to the locked state)

Lecture 8:

Pushbutton Lock: Moore State Diagram

19

• Output: UL=1 with (X1, X2, X2)
• Input: 00 (neither), 10 (X1), 01 (X2), 11 (reset)

Lecture 8:

Pushbutton Lock: Mealy State Diagram

20

• Output: UL=1 with (X1, X2, X2)
• Input: 00 (neither), 10 (X1), 01 (X2), 11 (reset)

Lecture 8:

FSM: General Circuit Form

21

•••

•••
•••

•••
•••

Inputs Outputs

Next
State

Current
State

FF

FF

Combinational
Logic

CLK

• Inputs and current state
determine state transitions

• Output changes determined
by changes in
• Current state (Moore), or
• Current state + inputs (Mealy)

Next lecture will cover how to convert
state diagrams into circuits

Lecture 8:

Moore Machine

22

•••

•••

•••
•••Inputs

Outputs

Next
State

Current
State

FF

FF

Next State
Combinational

Logic

Output
Combinational

Logic
•••

•••

Outputs only depend on
current state value

Lecture 8:

Mealy Machine

23

Inputs

Outputs

Next
State

Current
State

FF

FF

Next State
Combinational

Logic

Output
Combinational

Logic

•••

•••

•••

•••

•••

•••

Outputs only depend on
input and current state value

Lecture 8: 24

Next Class

More Finite State Machines
(H&H 4.6, 4.9)

