
Lecture 8:

Spring 2025

ECE 2300
Digital Logic & Computer Organization

More Verilog
Finite State Machines

1



Lecture 8:

Announcements
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• Lab 2 released 

• HW 3 due tomorrow

• Prelim 1
– Thursday Feb 27th, 1:25-2:40pm in class

• closed book, closed notes, closed Internet
– Coverage: Lectures 1~6, first part of Lecture 7 

• Binary number, Boolean algebra, CMOS, combinational logic, 
sequential logic

– A sample prelim exam will be posted tomorrow 
– A TA-led review session will be scheduled (& 

recorded) on Feb 24
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• Continuous assignments apply to combinational 
logic only

• Multiple continuous assignments happen in 
parallel; the order does not matter

wire a, b, c, d;
assign c = a & d; // Uses d, even though d is assigned later
assign d = ~b;  

Recap: Continuous Assignments in Verilog



Lecture 8: 4

Exercise: Verilog Circuit Modeling

• Which of the following Verilog code snippets 
infer sequential logic

input clk, d;
output q;
assign q = clk & d;

(b)(a) (c)

input clk, d;
reg q;
always @ (clk)
begin
  if ( clk )
    q = d;
end

// D latch?

input clk, d;
reg q;
always @ (clk, d)
begin
  q = clk & d;
end
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Recap: Sequential Logic with 
Always Blocks
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reg Q;

always @(clk, D) 
begin 
if ( clk ) 

Q = D; 
end 

Sequential logic can ONLY be modeled using always blocks 

D latch DFF

QD

C

QD

CLK

Q is declared as a "reg" since it appears on the left-hand side of 
a procedural assignment

reg Q;

always @(posedge clk) 
begin 
Q = D; 

end 
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Procedural Assignments in Always Blocks
• Always blocks contain a set of procedural 

assignments (blocking or nonblocking)

Simulation behavior: 

– Blocking assignments (=) execute RHS sequentially 
within the always block, completing each assignment to 
LHS before moving to the next

– Non-blocking assignments (<=) execute RHS in parallel 
and the assignments are scheduled to update LHS at 
the end of the always block
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Blocking Assignments
• Left-hand side (LHS) = Right-hand side (RHS)

input A, B;
reg Y, Z;
always @ (posedge clk)
begin

Y = A & B;
Z = Y;

end

When a reg (Y here) is assigned in a 
blocking assignment (Y=A&B), employ its 
D input (i.e., A&B) for connection in RHS 
of a subsequent assignment (Z=Y)

Ynext ß A & B
Znext ß (Ynext = A & B) // use “new” Y

Simulation behavior Synthesized circuit

• RHS evaluated sequentially
• Assignment to LHS is immediate

Y and Z are inferred as FFs 
here, since the always block 
is sensitive to the clock edge

ZY

A
B

D Q D Q

ZY
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Nonblocking Assignments
• Left-hand side (LHS) <= Right-hand side (RHS)

Znext ß Y // use “old” Y 
Ynext ß A & B

Simulation behavior Synthesized circuit

When a reg (Y here) is assigned in a 
nonblocking assignment (Y<=A&B), 
employ its Q output for connection in 
RHS of another assignment (Z<=Y)

• RHS evaluated in parallel (order doesn’t 
matter)

• Assignment to LHS is delayed until 
the end of the always block

input A, B;
reg Y, Z;
always @ (posedge clk)
begin

Y <= A & B;
Z <= Y;

end

Y and Z are inferred as FFs 
here, since the always block 
is sensitive to the clock edge

B
A

ZY
D Q D Q
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Finite State Machine

• A Finite State Machine (FSM) is an abstract 
representation of a sequential circuit
– The state embodies the condition of the system at this 

particular time
– The combinational logic determines the output and 

next state values
– The output values may depend only on the current 

state value (Moore), or on the current state and input 
values (Mealy)
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Elements of an FSM
1. A finite number of inputs
2. A finite number of outputs
3. A finite number of states
4. A specification of all 

state transitions

Can be described by a state diagram
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Next
State

Combinational
Logic

Inputs Outputs

State 

Current
State

• Inputs and current state determine state transitions
• Output changes determined by changes in 

• Current state (More FSM), or
• Current state + inputs (Mealy FSM)
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State Diagram
• Visual specification of an FSM

– Bubble for every state
– Arcs showing state transitions 
– Input values shown on the arcs
– Output values shown within the bubbles (Moore) or 

on the arcs (Mealy)
– Clock input implicit (always present, triggering state 

transitions)
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Example: Moore State Diagram

• 1 input (1 bit), 1 output (1 bit), 3 states
• Bubble for each state
• State transitions (arcs) for each input value
• Input values on the arcs
• Output values within the bubbles
• Starts at S0 when Reset asserted 
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Example: Mealy State Diagram
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• 1 input (1 bit), 1 output (1 bit), 2 states
• Bubble for each state
• State transitions (arcs) for each input value
• Input values on the arcs (first number)
• Output values on the arcs (second number)
• Starts at S0 when Reset asserted 

1/0 1/1

S0 S1

0/0Reset

0/0
Mealy FSM 
Example
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FSM Design Procedure
(1) Understand the problem statement and 

determine inputs and outputs

(2) Identify states and create a state diagram

(3) Determine the number of required FFs

(4) Implement combinational logic for outputs 
and next state

(5) Simulate the circuit to test its operation
14

This 
lecture
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Example FSM: Pattern Detector
• Monitors the input, and outputs a 1 whenever a 

specified input pattern is detected

• Example: Output a 1 whenever 111 is detected 
on the input over 3 consecutive clock cycles
– Overlapping patterns also detected (1111...)

• Input In (one bit)
• Output Out (one bit)
• Reset causes FSM to start in initial state
• Clock input not shown (always present) 
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111 Pattern Detector: Moore State Diagram
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• Output a 1 whenever 111 is detected on the input over 3 consecutive 
clock cycles (overlapping pattern also detected)
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111 Pattern Detector: Mealy State Diagram
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• Output a 1 whenever 111 is detected on the input over 3 consecutive 
clock cycles (overlapping pattern also detected)
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Example FSM: Pushbutton Lock
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• Two pushbutton inputs, X1 and X2
• One output, UL (“Unlock”)

• UL = 1: the lock is unlocked, when X1 is pushed, 
followed by X2 being pushed twice (X1, X2, X2)

• Represent X1 and X2 as two-bit input
– 00: neither button pushed
– 10: X1 pushed
– 01: X2 pushed
– 11: both pushed, reset the lock (to the locked state)
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Pushbutton Lock: Moore State Diagram
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• Output: UL=1 with (X1, X2, X2)
• Input: 00 (neither), 10 (X1), 01 (X2), 11 (reset)
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Pushbutton Lock: Mealy State Diagram
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• Output: UL=1 with (X1, X2, X2)
• Input: 00 (neither), 10 (X1), 01 (X2), 11 (reset)
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FSM: General Circuit Form
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• Inputs and current state 
determine state transitions

• Output changes determined
by changes in 
• Current state (Moore), or 
• Current state + inputs (Mealy)

Next lecture will cover how to convert 
state diagrams into circuits



Lecture 8:

Moore Machine
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Mealy Machine 
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Next Class

More Finite State Machines
(H&H 4.6, 4.9)


