ECE 2300
Digital Logic & Computer Organization

Spring 2025

More Verilog
Finite State Machines

@E;) Cornell University
04' .\q,

Lecture 8: 1

Announcements

 Lab 2 released
 HW 3 due tomorrow

* Prelim1
— Thursday Feb 27th, 1:25-2:40pm in class
* closed book, closed notes, closed Internet

— Coverage: Lectures 1~6, first part of Lecture 7

« Binary number, Boolean algebra, CMOS, combinational logic,
sequential logic

— A sample prelim exam will be posted tomorrow

— A TA-led review session will be scheduled (&
recorded) on Feb 24

Lecture 8: 2

Recap: Continuous Assignments in Verilog

« Continuous assignments apply to combinational
logic only

* Multiple continuous assignments happen in
parallel; the order does not matter

wire a, b, c, d;

assign c = a & d; / Uses d, even though d is assigned later
assign d = ~D;

Lecture 8: 3

Exercise: Verilog Circuit Modeling

* Which of the following Verilog code snippets
infer sequential logic

input clk, d; input clk, d; input clk, d;
output q; reg q; reg q;
assign q = clk & d; always @ (clk, d) always @ (clk)
begin begin
g =clk & d; if (clk)
end q=d; // D latch?
end

(a) (b) (c)

Lecture 8: 4

Recap: Sequential Logic with
Always Blocks

Sequential logic can ONLY be modeled using always blocks

reg Q;
reg Q;
always @(clk, D)
begin always @(posedge clk)
if (clk) begin
Q=D; Q=D;
end end
D Ql— —iD Q—
- C o —>CLK -
D latch DFF

Q is declared as a "reg" since it appears on the left-hand side of
a procedural assignment

Lecture 8: 5

Procedural Assignments Iin Always Blocks

« Always blocks contain a set of procedural
assignments (blocking or nonblocking)

Simulation behavior:

— Blocking assignments (=) execute RHS sequentially
within the always block, completing each assignment to
LHS before moving to the next

— Non-blocking assignments (<=) execute RHS in parallel
and the assignments are scheduled to update LHS at
the end of the always block

Lecture 8: 6

Blocking Assignments

Left-hand side (LHS) = Right-hand side (RHS)

input A, B;
reg Y, Z; Y and Z are inferred as FFs

alwavs osedae clk here, since the always block
@ J) is sensitive to the clock edge

begin
Y=A&B;
Z=Y;
end
Simulation behavior A Synthesized circuit
Y. .. €A&B B::)-L
Lot € (Ynext = A & B) // use “new” Y — L —1
D Y D Z
* RHS evaluated sequentially When a reg (Y here) is assigned in a
» Assignment to LHS is immediate blocking assignment (Y=A&B), employ its

D input (i.e., A&B) for connection in RHS
of a subsequent assignment (Z=Y)

Lecture 8: 7

Nonblocking Assignments

« Left-hand side (LHS) <= Right-hand side (RHS)

input A, B;
regy, Z; Y and Z are inferred as FFs
always @ (posedge clk) here, since the always block
begin is sensitive to the clock edge
Y <=A&B;
Z<=Y;
end
Simulation behavior A Synthesized circuit
Lot €Y [/l use “old” Y B—
Yiext € A&B — .
D Y >
* RHS evaluated in parallel (order doesn’t Z
matter) When a reg (Y here) is assigned in a
« Assignment to LHS is delayed until nonblocking assignment (Y<=A&B),
the end of the always block employ its Q output for connection in

RHS of another assignment (Z<=Y)
Lecture 8: 8

Finite State Machine

Outputs‘

Inputs ‘

Current Next

State [Swee

* A Finite State Machine (FSM) is an abstract
representation of a sequential circuit

— The state embodies the condition of the system at this
particular time

— The combinational logic determines the output and
next state values

— The output values may depend only on the current
state value (Moore), or on the current state and input
values (Mealy)

Lecture 8: 9

Elements of an FSM

1. A finite number of inputs
2. A finite number of outputs

3. A finite number of states

Inputs

4. A specification of all
state transitions

Current
State

Outputs

Next
State

— ()

Can be described by a state diagram

* Inputs and current state determine state transitions

« Output changes determined by changes in

e Current state (More FSM), or

e Current state + inputs (Mealy FSM)

Lecture 8: 10

State Diagram

* Visual specification of an FSM
— Bubble for every state
— Arcs showing state transitions
— Input values shown on the arcs

— Output values shown within the bubbles (Moore) or
on the arcs (Mealy)

— Clock input implicit (always present, triggering state
transitions)

Moore FSM Example Mealy FSM Example

Reset 0 1 Reset 0/0

GLOLD (e

1 1/0

Lecture 8: 11

Example: Moore State Diagram

Reset 0

Moore FSM
Example

1 input (1 bit), 1 output (1 bit), 3 states
Bubble for each state

State transitions (arcs) for each input value
Input values on the arcs

Output values within the bubbles

Starts at S0 when Reset asserted

Lecture 8: 12

Example: Mealy State Diagram

Reset 0/0

a ° Mealy FSM
C> Example

1/0 1

1 input (1 bit), 1 output (1 bit), 2 states
Bubble for each state

State transitions (arcs) for each input value
Input values on the arcs (first number)

Output values on the arcs (second number)
» Starts at SO0 when Reset asserted

Lecture 8: 13

FSM Design Procedure

(1) Understand the problem statement and

determine inputs and outputs This
lecture

(2) Identify states and create a state diagram

(3) Determine the number of required FFs

(4) Implement combinational logic for outputs
and next state

(5) Simulate the circuit to test its operation

Lecture 8: 14

Example FSM: Pattern Detector

Monitors the input, and outputs a 1 whenever a
specified input pattern is detected

Example: Output a 1 whenever 111 is detected
on the input over 3 consecutive clock cycles
— Overlapping patterns also detected (1111...)

Input /n (one bit)

Output Out (one bit)

Reset causes FSM to start in initial state
Clock input not shown (always present)

Lecture 8: 15

111 Pattern Detector: Moore State Diagram

Output a 1 whenever 111 is detected on the input over 3 consecutive
clock cycles (overlapping pattern also detected)

Lecture 8: 16

111 Pattern Detector: Mealy State Diagram

Output a 1 whenever 111 is detected on the input over 3 consecutive
clock cycles (overlapping pattern also detected)

Lecture 8: 17

Example FSM: Pushbutton Lock
Two pushbutton inputs, X1 and X2

One output, UL (“Unlock™)

UL = 1: the lock is unlocked, when X1 is pushed,
followed by X2 being pushed twice (X1, X2, X2)

Represent X1 and X2 as two-bit input

— 00: neither button pushed

— 10: X1 pushed

— 01: X2 pushed

— 11: both pushed, reset the lock (to the locked state)

Lecture 8: 18

Pushbutton Lock: Moore State Diagram

* Output: UL=1 with (X1, X2, X2)
* Input: 00 (neither), 10 (X1), 01 (X2), 11 (reset)

Lecture 8: 19

Pushbutton Lock: Mealy State Diagram

* Output: UL=1 with (X1, X2, X2)
* Input: 00 (neither), 10 (X1), 01 (X2), 11 (reset)

Lecture 8: 20

Inputs

FSM: General Circuit Form

—>> >
_:> Combinational >
Logic

>
—
FF [
Current L_ Next
State : State
Fr[®
CLK

Outputs

* Inputs and current state
determine state transitions

* Output changes determined
by changes in
* Current state (Moore), or
* Current state + inputs (Mealy)

Next lecture will cover how to convert
state diagrams into circuits

Lecture 8: 21

Moore Machine

Inputs

Outputs only depend on
current state value

— Output >
. Combinational : Outputs
> Logic >

>
. Next State

¢o—P| Combinational
.> Logic
g
Fr[®
Current L_ Next
State . State
|
FF

Lecture 8: 22

Mealy Machine

Inputs

Outputs only depend on
input and current state value

-
Output |—p
— ®|Combinational| : Outputs
L Logic —
—>
>
Next State
*—»Combinationall .
¢ - Logic :
® : .
J
Current L—Il Next
State . State
m>

FF

Lecture 8: 23

Next Class

More Finite State Machines
(H&H 4.6, 4.9)

Lecture 8: 24

