# **ECE 2300 Digital Logic & Computer Organization** Spring 2025

Single Cycle Microprocessor



#### **Announcements**

- HW 5 due tomorrow
- HW 6 will be posted today
  - Covers Lecture 16
- Prelim 2: Thursday April 10, 7:30pm, 90mins, GSH G76
  - Coverage: Lectures 8~16
    - FSMs, timing analysis, binary arithmetic, memories, single-cycle microprocessor (no Verilog)
  - A sample exam will be posted on CMS next week
  - TA-led review will be scheduled on Monday 4/7
  - Email the instructor asap if you have a conflict

#### SRAM vs. DRAM



**Bit line** (BL) **Word line** (WL) 1-Bit **DRAM Cell** 

- **SRAM**: usually on the same chip with CPU
  - (+) Fast access
  - (-) Relatively high area & cost per bit (6T)
- DRAM: typically off-chip & used for main memory
  - (+) Single transistor bit cell (1T1C)
    - Lower area & lower cost per bit
  - (-) Slow: need periodic refresh

SRAM typically ranges from KB to MB, while DRAM is usually in GB.

## **Computer Memory Explained (by analogy)**







## **Course Roadmap (Part 1)**

- Boolean algebra
- Combinational logic and minimization
- Logic functions
- CMOS gates
- Binary arithmetic and ALUs
- Latches and flip-flops
- Counters
- Verilog
- Finite state machines
- Hazards, timing, clocking
- Memories

# Part 2: Computer Organization



## Let's Build a Microprocessor!



#### **The Compute Core**



- The processor has internal memory called the register file (RF), built with DFFs or SRAM, which are much faster to access than DRAM, but also a lot more expensive<sup>1</sup>
- The ALU reads data from the RF, performs computations, and write back the result

<sup>&</sup>lt;sup>1</sup> The RF is small, so data must be moved between main memory and RF using explicit load/store instructions (covered in later slides).

## The Basic Processing Cycle



- Read data from two registers
- Perform an operation
- Place the result into a register
- All three steps performed in 1 clock cycle

# Register File (RF)

- Collection of 2<sup>k</sup> n-bit registers
- Data outputs (two read ports)

DataA – Output data A

DataB – Output data B

Data inputs (one write port)

**D\_in – Input data** 



#### Control inputs

SA – Address (or index) of source register A

SB – Address of source register B

**DR – Address of destination register** 

LD (i.e., write enable) – Load D\_in into destination register DR

## **Example RF Organization**



**Example with 4 registers. Typically have 32 or more.** 

#### **Instruction Execution**





#### **Instruction Execution**



**ADD R0, R1, R2** 



**Lecture 15: 13** 

#### **Instruction Execution**



#### **Operations With Constants**



- Constants are called immediate values (IMM)
- Sign extend (SE) IMM to the width of DataA to perform correct two's complement operation
  - Why? not enough bits in instruction (explained later)
  - Assume IMM is 4 bits and DataA is 8 bits wide

 $0001 \longrightarrow 00000001$   $1110 \longrightarrow 11111110$ 

#### Sign Extension

Replicate the MSB (sign bit)

```
\frac{4-bit}{0100} (4) → \frac{8-bit}{00000100} (still 4) 1100 (-4) → \frac{11111100}{00000100} (still -4)
```

 Necessary for aligning two's complement numbers of different lengths before a fixed-size arithmetic operation

## Reading and Writing Memory



- Most data are held in main memory (MEM)
- Must be moved into registers for ALU to operate on them
- Data will also move out of registers into memory
  - To make room for other data
  - Or to later move it to permanent storage (e.g., disk)

## Reading from Memory ("Load")



Example: LOAD R3, 4(R1) // R3 <= M[R1 + 4]

M means "Main Memory"

Step 1: Form the memory address by adding R1 (base address) with the immediate 4 (offset)

Step 2: Read the data at that address in RAM (M[R1+4]) and place it in R3

## Writing to Memory ("Store")



**Example: STORE R2**, **0(R0) // M[R0] <= R2** 

Step 1: Form the memory address by adding R0 (base) with the immediate 0 (offset)

Step 2: Write the data in R2 into the RAM at that address (M[R0+0], i.e., M[R0])

## **Control Unit (CU)**

- Regulates the interaction between data and operations on data (i.e., datapath)
- Series of control words control the datapath to perform a sequence of operations
- The sequence of operations performed by the CU may be affected by the ALU Condition Codes
  - Z: Zero
  - N: Negative
  - Also V: Overflow and C: Carry out

#### **Datapath + Control Unit**



# **Sequence of Operations**

#### **Assuming 8 registers in the RF**



R2 <= R0 + R1

| DR  | SA  | SB  | IMM | MB | FS  | MD | LD | MW |
|-----|-----|-----|-----|----|-----|----|----|----|
| 010 | 000 | 001 | х   | 0  | ADD | 0  | 1  | 0  |

# **Sequence of Operations**

#### **Assuming 8 registers in the RF**



$$R1 \leq M[R2]$$

| DR  | SA  | SB  | IMM | MB | FS  | MD | LD | MW |
|-----|-----|-----|-----|----|-----|----|----|----|
| 010 | 000 | 001 | Х   | 0  | ADD | 0  | 1  | 0  |
| 001 | 010 | х   | 0   | 1  | ADD | 1  | 1  | 0  |

## **Sequence of Operations**

#### **Assuming 8 registers in the RF**



$$R1 \leq M[R2]$$

$$R3 \le R1 - 3$$

| DR  | SA  | SB  | IMM | MB | FS  | MD | LD | MW |
|-----|-----|-----|-----|----|-----|----|----|----|
| 010 | 000 | 001 | Х   | 0  | ADD | 0  | 1  | 0  |
| 001 | 010 | Х   | 0   | 1  | ADD | 1  | 1  | 0  |
| Х   | 010 | 000 | 0   | 1  | ADD | Х  | 0  | 1  |
| 011 | 001 |     | 3   |    | SUB |    |    |    |

#### **Next Class**

# More Single Cycle Microprocessor (H&H 7.3)