
Lecture 26:

Spring 2025

1

Advanced Topics

ECE 2300
Digital Logic & Computer Organization

Lecture 26: 2

Announcements
• Lab 5 deadline extended

• Return the FPGA board by Friday May 9th during
a TA OH

• Fill out 2300 course evaluation (due Friday 5/9)
– Comments not required but very welcome

Lecture 26: 3

Final Exam
• Saturday May 10, 9:00-10:40AM (100 mins) at Phillips 101

– Arrive early by 8:50am
– Closed book, closed notes, closed Internet

– Coverage: Full course, with a particular emphasis on computer
organization (Lectures 15~25)

• Programmable microprocessor, pipelining, caches, performance
measurement, virtual memory, exceptions, I/O

• Other essential concepts (e.g., 2’s complement, timing analysis, and
ISA) may still appear in questions related to computer organization

– Solution to the sample exam is posted on CMS
– HW 8 solution will be released soon

• Same OH schedule during study period (Ed post #21),
except Slope Day

https://edstem.org/us/courses/72685/discussion/6044189

Lecture 26: 4

• Program counter (PC): Save

• Registers in RF: Save

• Page table register (PTR): Save

• TLB: Invalidate all entries

• Caches: Typically retained; not flushed during
context switch as they hold physical addresses

Review: Context Switching

Lecture 26:

Review: Accessing the TLB and the Cache

• Cache usually uses physical addresses since it holds a
subset of what is in MM

5

Byte
 offsetIndexTag

Cache

=

Virtual page number Page offsetvirtual
address

TLB

Physical page number Page offsetphysical
address

Lecture 26:

Accessing the TLB and the Cache

6

• What about this situation with a different cache
configuration?
– We can access the TLB and cache simultaneously because the

index bits used for cache addressing don't require translation

Byte
 offsetIndexTag

Cache

=

Virtual page number Page offsetvirtual
address

TLB

Physical page number Page offsetphysical
address

Lecture 26:

Iron law of Processor Performance

CPU Execution Time = I x CPI x CT

7

number of instructions
in the program

average number of
cycles per instruction

clock cycle time
(1/frequency)

Lecture 26:

Parallelism as a Path to Lower CPI
• Processor architects improve performance

through hardware that exploits the different
types of parallelism within computer programs

• Instruction-Level Parallelism (ILP)
– (fine-grain) parallelism within a sequential program

• Thread-level parallelism (TLP)
– (coarse-grain) parallelism among different threads in

a program
• Data-level parallelism (DLP)

– parallelism among the data within a program

8

Lecture 26:

Instruction-Level Parallelism (ILP)

• Refers to the parallelism found within a sequential
program

• Consider the ILP in this program segment

9

ADD R1,R2,R3
OR R4,R4,R3
SUB R5,R2,R3
AND R6,R6,R2
ADDI R7,R7,3
LW R2,R3,0

• Superscalar pipelines exploit ILP by duplicating the
pipeline hardware

Lecture 26:

Two-Way Superscalar Pipeline

10

IF/ID ID/EX EX/MEM MEM/WB

IF ID EX MEM WB

IM Reg
A
L
U

DM

A
L
U

Reg

Lecture 26:

IM Reg
A
L
U

DM

A
L
U

Reg

Instruction Sequence on 2W SS

11

ADD R1,R2,R3
OR R4,R4,R3
SUB R5,R2,R3
AND R6,R6,R2
ADDI R7,R7,3
LW R2,R3,0

Lecture 26:

IM Reg
A
L
U

DM

A
L
U

Reg

Instruction Sequence on 2W SS

12

ADD R1,R2,R3
OR R4,R4,R3
SUB R5,R2,R3
AND R6,R6,R2
ADDI R7,R7,3

ADD R1,R2,R3
OR R4,R4,R3

LW R2,R3,0

Lecture 26:

Instruction Sequence on 2W SS

13

ADD R1,R2,R3
OR R4,R4,R3

SUB R5,R2,R3
AND R6,R6,R2

IM Reg
A
L
U

DM

A
L
U

Reg
ADD R1,R2,R3
OR R4,R4,R3
SUB R5,R2,R3
AND R6,R6,R2
ADDI R7,R7,3
LW R2,R3,0

Lecture 26:

Instruction Sequence on 2W SS

14

ADD R1,R2,R3
OR R4,R4,R3

SUB R5,R2,R3
AND R6,R6,R2

ADDI R7,R7,3
LW R2,R3,0

IM Reg
A
L
U

DM

A
L
U

Reg
ADD R1,R2,R3
OR R4,R4,R3
SUB R5,R2,R3
AND R6,R6,R2
ADDI R7,R7,3
LW R2,R3,0

Lecture 26:

ARM Cortex-A8 Microprocessor

15

Apple iPhone 4, iPod Touch (3rd & 4th gen), iPad; Motorola Droid, Droid X, Droid 2; Palm Pre, Pre
2; Samsung Omnia HD, Wave 8500, i9000 Galaxy S, P1000 Galaxy Tab; HTC Desire; Google Nexus
S; Nokia N900; Sony Ericsson Satio, Xperia X10, etc, etc

Lecture 26:

Cortex-A8 Processor Pipeline
• 2-way superscalar

– With some dual issue restrictions: only one multiplier and one
load/store unit

• Average CPI of 1.1

• 13 stages for integer instructions, 3 major sections
– Instruction Fetch, Instruction Decode, Execute

• Up to 1GHz clock frequency

• ~0.5W @ 1GHz (processor core only)

16

Lecture 26:

Caches and TLBs
• Identical L1 instruction and data caches

– 16KB or 32KB
– 4-way set associative
– 64-byte block size
– Random replacement policy

• 32 entry, fully associative ITLB and DTLB

• L2 cache
– Up to 1MB, 8-way set associative, 64 byte block size,

random replacement

17

Lecture 26:

Data Dependency Limits SS Execution
• Consider this program sequence

• The ADD and the OR, and the SUB and AND,
cannot execute at the same time
– Cortex-A8 limits dual issue in this case

• Addressed by out-of-order execution

18

ADD R1,R2,R3
OR R4,R1,R3
SUB R5,R2,R3
AND R6,R6,R5

Lecture 26:

Out-of-Order Execution
• Processor can execute instructions out of the

original program order

• One key component is an issue queue that
tracks the availability of source operands

19

ADD R1,R2,R3
OR R4,R1,R3
SUB R5,R2,R3
AND R6,R6,R5

ADD R1,R2,R3

OR R4,R1,R3
SUB R5,R2,R3

AND R6,R6,R5

IF ID EX

Reg
File

...
Issue Queue

MEM

Lecture 26:

ARM Cortex-A9
• Successor to the Cortex-A8
• Superscalar pipeline with out-of-order execution

– Issues up to 4 instruction each clock cycle
• ITLB and DTLB + L2 TLB

20

Apple iPhone 4S, iPad2; Motorola Droid Bionic, Altrix 4G, Xoom; Blackberry Playbook;
Samsung Galaxy S II, Galaxy S III; HTC Sensation, EVO 3D; LG Optimus 2X, Optimus
3D; Lenovo IdeaPad K2, ASUS Eee Pad Transformer; Acer ICONIA TAB A-series, etc, etc

Lecture 26:

A More Troublesome Piece of Code
• Now consider this program sequence

• Superscalar pipeline would send instructions
one by one through EX, MEM, and WB
– 1 ALU, 1 memory port, and 1 RF port would sit idle,

perhaps through 10000+ loop iterations!

• How to improve the hardware utilization?
21

Loop1: ADD R1,R2,R3
OR R4,R1,R3
SUB R5,R4,R3
AND R1,R6,R5
BEQ R2,R1,Loop1

Lecture 26:

Thread-Level Parallelism (TLP)
• Refers to the parallelism among different threads

(usually identified by the programmer)
– A thread is a path of execution within a program
– Each uses its own registers but they share the memory

• Consider two threads that we want to run

• We can run them on separate cores, or create a
superscalar pipeline that can run them both at the
same time

22

Loop1: ADD R1,R2,R3
OR R4,R1,R3
SUB R5,R4,R3
AND R1,R6,R5
BEQ R2,R1,Loop1

Thread 1

Loop2: LW R7,0(R1)
ADD R4,R7,R2
SUBI R5,R4,1
SW R5, 0(R1)
BGEZ R5, Loop2

Thread 2

Lecture 26:

Two-Way Multithreaded Pipeline

23

• Two threads share many of the pipeline
resources (and virtual memory space)

• Each thread has its own PC and (physical)
registers

• This is one example of multithreading, called
Simultaneous Multithreading (SMT)

PC
PC IF/ID ID/EX EX/MEM MEM/WB

IF ID EX MEM WB

IM
A
L
U

DM

A
L
U

Reg

Reg

Reg

Reg

Lecture 26:

Data-Level Parallelism
• Consider the following C code

• Arrays a, b, and c contain four 8-bit elements
– e.g., A[0], A[1], A[2], A[3] for array A

• Same operation is done for each data element

• Can replace the 4 add operations in the loop above
by 1 SIMD add instruction

24

char A[4], B[4], C[4];
for (i = 0; i < 4; i++)
 A[i] = B[i] + C[i];

Lecture 26:

SIMD Instructions
• SIMD: Single Instruction, Multiple Data

• Special instructions for vector data (arrays)

• Identical operation is performed on each of the
corresponding data elements

• Data elements are stored contiguously
– 1 load (store) can read (write) all the elements at once
– Register file is wide enough to hold all the elements in one

register

25

Lecture 26:

Implementing the for Loop Using SIMD

26

char A[4], B[4], C[4];

for (i = 0; i < 4; i++)
 A[i] = B[i] + C[i];

; load b and c from memory
LW R0, 0(R4) ; R4 points to B
LW R1, 0(R5) ; R5 points to C
; vector add
ADD.V R2, R0, R1 ; one inst does four 8-bit adds!
; store result
SW R2, 0(R3) ; R3 points to A

Assume 32-bit registers and a 32-bit memory word
(also note each `char’ variable holds 8 bits)

Lecture 26:

ILP, TLP, and DLP
• Many processors exploit all three

– Best performance/watt achieved with each in moderation
rather than one/two to the extreme

• ILP
– Typically 2 to 6-way superscalar pipeline
– Performance improvement tapers off with wider pipelines

while power may increase significantly
• TLP

– Support for multiple threads may require small amount of
additional hardware over single threaded SS pipeline

– May improve hardware efficiency compared to SS alone
• DLP

– Many applications (AI, graphics, video and audio processing,
etc.) make this worthwhile

27

Lecture 26: 28

Ongoing Trends in Computer Systems

Lecture 26: 29

Which Computer is Faster,
and By How Much?

NVIDIA GH200
NVL2 Server

(2025)

Cray 1
Supercomputer

(1975)

vs.

Lecture 26:

Iron law of Processor Performance

CPU Execution Time = I x CPI x CT

30

number of instructions
in the program

average number of
cycles per instruction

clock cycle time
(1/frequency)

Lecture 26: 31

Revisiting Synchronous Circuits

• The processor functions as a large state machine
– The changes in the state of the memory elements are

synchronized by a clock signal
– A faster clock enables more operations (instructions) per

second

Next
State

Combinational
Logic

Inputs Outputs

Memory
elements
(FFs, RAMs)

Current
State

Clock

Lecture 26: 32

Microprocessor Scaling (pre-2005)

• Transistor counts per chip doubled roughly every 2 years,
following Moore’s Law

• Clock frequencies increased exponentially, enabled by
Dennard scaling

Lecture 26: 33

Microprocessor Scaling (post-2005)

• Transistor counts continue to scale
• Frequency scaling plateaued (end of Dennard scaling) =>

led to multicore & greater emphasis on energy efficiency

End of Dennard Scaling

Lecture 26: 34

Era of Billion-Transistor Chips

AMD (Xilinx) Versal Premium
~92B transistors

Intel Sapphire Rapids
(quad-chip module)

~48B transistors

Apple A16
~16B transistors

Apple M2 Pro
~40B transistors

AMD EPYC Bergamo
(9-chip module)
~82B transistors

NVIDIA Blackwell B200
~208B transistors

Lecture 26: 35

Typical Multicore Architecture

Private L1/L2 Cache

Control
ALU

ALU ALU

ALU

Private L1/L2 Cache

Control
ALU

ALU ALU

ALU

Private L1/L2 Cache

Control
ALU

ALU ALU

ALU

Private L1/L2 Cache

Control
ALU

ALU ALU

ALU

Shared Last-Level Cache (LLC)

Do we expect a 4X speedup with 4 cores?
NO

• Per Amdahl’s Law, multicore speedup is limited by the serial part
• A multi-core processor typically runs at a lower frequency than a

single big core due to power constraints

Lecture 26: 36

GPU Architecture
• GPU has thousands of cores

to run many threads in parallel
– Cores are simpler (compared

to CPU)
– No support of superscalar,

OOO, speculative execution,
etc.

– ISA not backward compatible

• Optimized to increase
throughput of running data-
parallel applications
– Initially targeting graphics

code

Cache

Control
ALU

ALU ALU

ALU

CPU

GPU

Lecture 26: 37

Power = Energy
Second

=
Energy
Op

×
Ops

Second

<<1W/chip ~1W/chip ~15W/chip ~50W/chip ~100W/chip >100W/chip

To increase performance (Ops/sec) in a power-constrained
regime, energy per operation must decrease—in other
words, energy efficiency (Ops/Joule) needs to improve!

Computing’s Energy Problem

Lecture 26: 38

Reducing Compute Energy Overhead

I-Cache RF Control

I-Cache RF Control

I-Cache RF Control hundreds
or more

… …

…

I-Cache RF Control

…

[Figure credit] Qadder, et al., Convolution Engine: Balancing Efficiency & Flexibility in Specialized Computing, ISCA’13.

I-Cache RF Control

Arithmetic

Control overheads
(clocking,
decoding, pipeline
control, ….)

I-Cache
access
(>20nJ)

Reg File
access
(~5nJ)

32-bit
ALU

I-Cache RF Control

A sequence of energy-inefficient instructions

Single instruction multiple Data (SIMD): tens of operations per instruction

Further specialization (what we achieve using accelerators)

Energy breakdown of a typical instruction

Lecture 26: 39

Era of Hardware Heterogeneity
• Special-purpose accelerators are increasingly used to

improve performance & energy efficiency in both
cloud and edge/mobile environments

Apple 12 (iPhone X)
Apple M1 Pro

Google TPUv3

Lecture 26: 40

Hardware Specialization in Mobile Chips

Apple 12 (iPhone X)

• Modern system-on-chips (SoCs) integrate a rich set of
special-purpose hardware accelerators
– Speed up critical tasks
– Reduce power consumption and cost
– Increase energy efficiency

Lecture 26: 41

HW Specialization in Laptop/Desktop Chips
• Special-purpose hardware accelerators (e.g., GPUs,

NPUs) improve performance and energy efficiency

Apple M1 Pro SoC
(33.7B transistors)

Lecture 26: 42

HW Specialization in Datacenter
• ASIC- and FPGA-based accelerators are being deployed

for a rich mix of compute-intensive applications in cloud
datacenters

Google TPUv3 board

Lecture 26: 43

HW Specialization in GPUs
• Modern GPUs are increasingly specialized for

AI workloads

Tensor core in NVIDIA Hopper
architecture
(WGMMA: Warp group matrix-multiply
accumulation)

https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
https://resources.nvidia.com/en-us-tensor-core/gtc22-whitepaper-hopper

https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
https://resources.nvidia.com/en-us-tensor-core/gtc22-whitepaper-hopper

Lecture 26: 44

The Incredible Advancements of
Computer Hardware

8 PetaFLOPS
900-2000W

NVIDIA GH200
NVL2 Server

(2025)

160 MegaFLOPS
115 kW

Cray 1
Supercomputer

(1975)

Credit: slide adapted from Jonathan Ragan-Kelley’s PLDI 2024 keynote
FLOPS stands for Floating Point Operations Per Second

Lecture 26: 45John Hennessy and David Patterson. "A New Golden Age for Computer
Architecture." Communications of the ACM, 2019.

https://doi.org/10.1145/3282307
https://doi.org/10.1145/3282307

Lecture 26:

Follow-on Courses
• ECE 2400 / ENGRD 2140: Computer Systems Programming

• ECE 3140 / CS 3420: Embedded Systems

• ECE 4750 / CS 4420: Computer Architecture

• ECE 4740: Digital VLSI Design

• CS 4410: Operating Systems

• CS 4120: Compilers

46

Lecture 26:

• Fill out 2300 course evaluation

Next Time

Final Exam

47

