
ECE 4750
Computer Architecture

Prof. José F. Martínez

Improving Cache Performance

• Use better technology
• Decrease Miss Rate
• Decrease Miss Penalty
• Decrease Hit Time

Increase Block Size
• Larger block size better exploits spatial locality, but

• larger block size means larger miss penalty
• takes longer time to transfer the block

• if block size is too big
• average access time goes up
• temporal locality is reduced when the replaced data would have

been reused (too few lines in cache)

Average
Access

TimeMiss
Penalty

Block Size

Miss
Rate Exploits Spatial Locality

Fewer blocks:
compromises
temporal locality

Increased Miss Penalty
& Miss Rate

Block Size Block Size

Higher Associativity

• Reduce the number of conflict misses
• more places to put data

• Two general rules of thumb (empirical):
• an 8-way set-associative $ performs near fully associative
• direct mapped cache of size N has same MR as a 2-way set associative cache

of size N/2 (2:1 cache rule of thumb)

• Tradeoff is increased hit time
• Commonly see high associativity in 2nd-level caches

• less common in 1st-level caches

Victim Cache

• Small fully-associative cache between real cache and its refill path
• contains only blocks replaced on recent misses (victims)

• On a miss:
• check victim cache
• if present, swap victim and cache entry
• else fetch as usual, put new victim in victim cache

• Shown effective for small direct-mapped caches
• trade-off is area and additional control complexity

• Does not trade-off hit time
• miss penalty?

Pseudo Set-Associative Caches

• Combine advantages of direct-mapped and set-associative caches
• Perform cache access as in a direct-mapped cache

• if hit, done
• if miss, check another cache entry!
• one scheme: invert MSB of index and check there

• Effectively a second set
• but, no parallel comparators or muxes (less HW)
• one set is fast access, one is slow access (extra cycle)
• want fast hits and not the slow hits

• Need some form of way prediction
• can result in lower AMAT than both DM and SA caches
• variable hit times complicate pipelines – use in lower levels

Hardware Prefetching

• A technique to improve cold and capacity misses
• Have hardware fetch extra lines on a miss

• Can store in cache, or a separate stream buffer

• E.g., i-cache fetch 2 blocks on an instruction miss
• Can do the same for data cache, even multiple buffers

• Modern prefetchers learn non-unit strides

• Scheme relies on excess available memory bandwidth
• Can hurt performance if it interferes with demand misses

Software Prefetching

• Compiler-directed
• analyze code and know where misses occur

• Insert a special prefetch instruction into the code stream
• most useful when it is a non-binding prefetch

• turns into a nop on an exception
• don’t prefetch everything – too much instruction overhead!
• ideally just prefetch the misses
• sophisticated compiler analysis in general case

• Requires the existence of lockup-free (non-blocking) caches
• Subsequent load to same cache line will

• hit in cache if prefetch is back from memory system
• miss, but not issue, if prefetch still outstanding

Compiler Optimizations

• Reduce miss rates without changing the hardware!
• Code is easily re-ordered

• cording rearranges procedures to reduce conflict misses
• use profiled information

• Data is more interesting (and harder)
• still, can to re-arrange data accesses to improve locality

• Examples:
• array merging
• loop interchange
• loop fusion
• blocking

Array Merging

• Some weak programmers produce code like:
int val[SIZE];
int key[SIZE];

• …and then proceed to reference key and val in lockstep
• What’s the problem?

Array Merging

• Some weak programmers produce code like:
int val[SIZE];
int key[SIZE];

• …and then proceed to reference key and val in lockstep
• Danger is that these accesses may interfere w/ each other
• Solution?

Array Merging

• Some weak programmers produce code like:
int val[SIZE];
int key[SIZE];

• …and then proceed to reference key and val in lockstep
• Danger is that these accesses may interfere w/ each other
• Solution: merge the arrays into a single array of records:
struct merge {
 int val;
 int key;
};
struct merge merged_array[SIZE];

Loop Interchange

• Some weak programmers produce code like:
for (j=0; j < 100; j++)
 for (k=0; k < 100; k++)
 x[k][j] = 2 * x[k][j];

• What’s the problem?

Loop Interchange

• Some weak programmers produce code like:
for (j=0; j < 100; j++)
 for (k=0; k < 100; k++)
 x[k][j] = 2 * x[k][j];

• C is a row-major language (Fortran is column-major)
• This code has a stride of 100 words, not 1
• No spatial locality, poor hit rates

• Solution?

Loop Interchange

• Some weak programmers produce code like:
for (j=0; j < 100; j++)
 for (k=0; k < 100; k++)
 x[k][j] = 2 * x[k][j];

• C is a row-major language (Fortran is column-major)
• This code has a stride of 100 words, not 1
• No spatial locality, poor hit rates

• Solution: interchange the loops!
for (k=0; k < 100; k++)
 for (j=0; j < 100; j++)
 x[k][j] = 2 * x[k][j];

• Does not affect number of instructions, just more hits!

Loop Fusion

• Some weak programmers produce code like:
for (j=0; j < N; j++)
 for (k=0; k < N; k++)
 a[j][k] = 1/b[j][k] * c[j][k];
for (j=0; j < N; j++)
 for (k=0; k < N; k++)
 d[j][k] = a[j][k] + c[j][k];

• What’s the problem?

Loop Fusion

• Some weak programmers produce code like:
for (j=0; j < N; j++)
 for (k=0; k < N; k++)
 a[j][k] = 1/b[j][k] * c[j][k];
for (j=0; j < N; j++)
 for (k=0; k < N; k++)
 d[j][k] = a[j][k] + c[j][k];

• No temporal locality if arrays are big enough
• Codes takes misses to a and c arrays twice

• Solution?

Loop Fusion

• Some weak programmers produce code like:
for (j=0; j < N; j++)
 for (k=0; k < N; k++)
 a[j][k] = 1/b[j][k] * c[j][k];
for (j=0; j < N; j++)
 for (k=0; k < N; k++)
 d[j][k] = a[j][k] + c[j][k];

• No temporal locality if arrays are big enough
• Codes takes misses to a and c arrays twice

• Solution: fuse the loops!
for (j=0; j < N; j++)
 for (k=0; k < N; k++) {
 a[j][k] = 1/b[j][k] * c[j][k];
 d[j][k] = a[j][k] + c[j][k];

Improving Cache Performance

• Use better technology
• Decrease Miss Rate
• Decrease Miss Penalty
• Decrease Hit Time

Read Priority

• Processor need not wait for (isolated) writes
• but what if we want to read – RAW through memory

• Reads do stall CPU – give priority to reads
• but serialize/forward if overlap with earlier write

Fill Before Spill

• In writeback caches

• If line is Dirty on a read/write miss, need to write it back
• This increases miss penalty for the demand miss
• Solution: spill buffer

• fetch demand miss from memory
• spill dirty line into on-chip spill buffer
• write spill buffer to memory in background after demand miss

• Subsequent misses wait for spill buffer to empty
• or even snoop

Early Restart

• Decrease miss penalty with no new hardware
• well, okay, with some more complicated control

• Strategy: impatience!
• There is no need to wait for entire line to be fetched
• Early Restart – as soon as the requested word (or double word) of the

cache block arrives, let the CPU continue execution
• If CPU references another cache line or a later word in the same line:

stall
• Early restart is often combined with the next technique…

Critical Word First

• Improvement over early restart
• request missed word first from memory system
• send it to the CPU as soon as it arrives
• CPU consumes word while rest of line arrives

• Even more complicated control logic
• memory system must also be changed
• block fetch must wrap around

• Example: 32B block (8 words), miss on address 20
• words return from memory system as follows: 20, 24, 28, 0, 4, 8, 12, 16

• other sequences possible

Lockup-Free Caches

• The CPU need not stall on cache misses
• dynamically scheduled processors can hide memory latency
• caches must be non-blocking or lockup-free

• Hit under miss schemes allow data cache to supply data for other
lines during a cache miss
• Extensions include “hit under multiple miss” (overlap misses)

• Significantly complicates cache control: Miss Handling Table (MHT)

2nd-Level Caches

• Add another level of cache between CPU and main memory
• allows first-level cache to remain small and fast
• second-level is slower but much larger (MBs)

• Reduces overall miss penalty, complicated perf analysis
• AMAT = Hit timeL1 + Miss RateL1 x Miss PenaltyL1
• Miss PenaltyL1 = Hit timeL2 + Miss RateL2 x Miss PenaltyL2
• What is 2nd-level miss rate?

• local miss rate – number of cache misses / cache accesses
• global miss rate – number of cache misses / CPU memory refs

• Local miss rate can be large…why?
• Global miss rate is more useful measure

Second-Level Cache Design

• Speed of 2nd level cache typ. affects only miss penalty, not CPU clock
• will it lower the AMAT portion of the CPI?
• how much does it cost?

• Size of 2nd level cache >> first level
• Most capacity misses go away, leaving conflict misses
• 2nd-level caches therefore

• typically have some degree of associativity > 1
• have large block sizes
• emphasis shifts from fast hits to fewer misses

Improving Cache Performance

• Use better technology
• Decrease Miss Rate
• Decrease Miss Penalty
• Decrease Hit Time

Improving Cache Performance

• Use better technology
• Decrease Miss Rate
• Decrease Miss Penalty
• Decrease Hit Time

• Use better or faster technology
• Simplify design (e.g., direct-mapped)
• Avoid or concurrentize translations (e.g., virtually-indexed)

