
ECE 4750 Computer Architecture, Fall 2024

Topic 7: Advanced Processors
Out-of-Order Execution

School of Electrical and Computer Engineering
Cornell University

revision: 2024-11-25-13-49

1 Incremental Approach to Exploring OOO Execution 2

2 I3L: IO Front-End/Issue/Completion, Late Commit 3

3 I2OE: IO Front-End/Issue, OOO Completion, Early Commit 5

4 I2OL: IO Front-End/Issue, OOO Completion, Late Commit 9

5 IO2E: IO Front-End, OOO Issue/Completion, Early Commit 14

6 IO2L: IO Front-End, OOO Issue/Completion, Late Commit 20

Copyright © 2024 Anne Bracy. All rights reserved. This handout was prepared by Prof.
Anne Bracy at Cornell University for ECE 4750 Computer Architecture (derived from
previous handouts prepared and copyrighted by Prof. Christopher Batten). Download
and use of this handout is permitted for individual educational non-commercial purposes
only. Redistribution either in part or in whole via both commercial or non-commercial
means requires written permission.

1. Incremental Approach to Exploring OOO Execution

1. Incremental Approach to Exploring OOO Execution

• Gradually work through five different microarchitectures

• For each microarchitecture

– overall pipeline structure
– required hardware data-structures
– example instruction sequence executing on microarchitecture
– handling precise exceptions

• Several simplifications

– all designs are single issue
– assume code sequence never includes WAW or WAR dependencies
– only support add, addi, mul

Front-End or Writeback or Data
Fetch/Decode Issue Completion Commit Structures

I3L io io io late

I2OE io io ooo early SB

I2OL io io ooo late SB, ROB

IO2E io ooo ooo early SB, IQ

IO2L io ooo ooo late SB, IQ, ROB

a: mul x1, x2, x3

b: addi x11, x10, 1

c: mul x5, x1, x4

d: mul x7, x5, x6

e: addi x12, x11, 1

f: addi x13, x12, 1

g: addi x14, x12, 2

Topic 7: Advanced Processors – Out-of-Order Execution 2

2. I3L: IO Front-End/Issue/Completion, Late Commit

2. IO Front-End/Issue/Completion, Late Commit

Front-End or Writeback or Data
Fetch/Decode Issue Completion Commit Structures

I3L io io io late

I2OE io io ooo early SB

I2OL io io ooo late SB, ROB

IO2E io ooo ooo early SB, IQ

IO2L io ooo ooo late SB, IQ, ROB

The following is the basic in-order single-issue pipeline. T07

F D X WM

Split X/M stages into two functional units. Still single issue, so not strictly
necessary but a nice incremental design step.

F D
1

X0

M0 M1
1 W

1

X1

What if we want to incorporate a four-cycle pipelined integer multiplier?
Key Idea: Extend all pipelines to equal length.

F D
1

X0

M0 M1

1 W
1

X1 X2

M2

X3

M3

Y0 Y1 Y2 Y3

Topic 7: Advanced Processors – Out-of-Order Execution 3

2. I3L: IO Front-End/Issue/Completion, Late Commit

Cannonical I3L Pipeline

F D
1

X0
1

W
1

Y0 Y1 Y2 Y3
ARF

ARF read

I
1

write

X1 X2 X3

• To avoid increasing CPI, need full bypassing which can be expensive

• Add new issue stage which

– reads architectural register file
– performs hazard checking and includes bypass muxing
– “issues” instruction to appropriate functional unit

• Include just X-pipe and Y-pipe since we are only focusing on
add, addi, and mul instructions

Example Execution Diagrams

a : mul x1, x2, x3

b : addi x11, x10, 1

c : mul x5, x1, x4

d : mul x7, x5, x6

e : addi x12, x11, 1

f : addi x13, x12, 1

g : addi x14, x12, 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Topic 7: Advanced Processors – Out-of-Order Execution 4

3. I2OE: IO Front-End/Issue, OOO Completion, Early Commit

3. IO Front-End/Issue, OOO Completion, Early Commit

Front-End or Writeback or Data
Fetch/Decode Issue Completion Commit Structures

I3L io io io late

I2OE io io ooo early SB

I2OL io io ooo late SB, ROB

IO2E io ooo ooo early SB, IQ

IO2L io ooo ooo late SB, IQ, ROB

Cannonical I2OE Pipeline

F D
1

X
1

W
1

Y0 Y1 Y2 Y3
ARF

ARF read

I
1

write

SB

SB read/write

• Remove “dummy” pipeline stages
• Fewer bypass paths, significantly reduces hardware complexity

– I3L has six bypass paths
– I2OE has three bypass paths
– Bypass from end of Y3, end of X, and W to end of I

• Scoreboard is used to centralize structural/data hazard detection
• WAW hazards are possible, which we ignore in this topic
• WAR hazards are not possible
• NOTE: Fewer stages does not necessarily mean better performance!

Topic 7: Advanced Processors – Out-of-Order Execution 5

3. I2OE: IO Front-End/Issue, OOO Completion, Early Commit

Data Structure: Scoreboard

• Indexed by functional unit

– V: valid bit
– rdest: destination reg specifier
– Entries shift to right every cycle

• Structural hazards: add and
addi check col 2 valid bit to
ensure no structural hazard on
WB port

• RAW hazards: I stage compares
current instruction source reg
specifiers with every valid
entry in SB

– match in col 2–4 = stall I
– match in col 0–1 = bypass into I
– no match = read ARF

• Large number of comparisons
make accessing SB expensive

• Indexed by reg specifier

– P: pending bit
– FU: functional unit
– WA: when available?
– WA bits shift to right every cycle

• Structural hazards: add and
addi check no bits are set in col
2 to ensure no structural hazard
on WB port

• I stage checks pending bit for
each source register specifier

– pending bit set = check WA to
see if stall or bypass (FU says
where to bypass from)

– pending bit clear = read ARF

• Can use SB to stall to prevent
WAW hazards

Topic 7: Advanced Processors – Out-of-Order Execution 6

3. I2OE: IO Front-End/Issue, OOO Completion, Early Commit

Example Execution Diagrams

a : mul x1, x2, x3

b : addi x11, x10, 1

c : mul x5, x1, x4

d : mul x7, x5, x6

e : addi x12, x11, 1

f : addi x13, x12, 1

g : addi x14, x12, 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

WA Entry

cycle D I x1 x5 x7 x11 x12 x13 x14

0

1 a

2 b a

3 c b 10000

4 01000 00010

5 00100 00001

6 d c 00010

7 00001 10000

8 01000

9 00100

10 e d 00010

11 f e 00001 10000

12 g f 01000 00010

13 00100 00001 00010

14 g 00010 00001

15 00001 00010

Topic 7: Advanced Processors – Out-of-Order Execution 7

3. I2OE: IO Front-End/Issue, OOO Completion, Early Commit

Handling Precise Exceptions

Since there are no memory instructions, W would be a natural place for
the commit point. But since W happens out of order, a commit point in
W would no longer support precise exceptions. (Notice below: insn b
will reach W before insn a because it travels down the shorter X pipe. If
insn a had an exception handled at W, insn b would have already
finished! That’s imprecise! That’s bad!)

a : mul x1, x2, x3

b : addi x11, x10, 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Conclusion: I2OE must have an early commit so that exceptions can be
precise (at decode, for example). Unfortunately, it’s not usually possible
to detect all exceptions in the front-end, so we’d really like to find a way
to support late commit at the end of the pipeline.

Can we do this?

Turn the page to find out....

Topic 7: Advanced Processors – Out-of-Order Execution 8

4. I2OL: IO Front-End/Issue, OOO Completion, Late Commit

4. IO Front-End/Issue, OOO Completion, Late Commit

Front-End or Writeback or Data
Fetch/Decode Issue Completion Commit Structures

I3L io io io late

I2OE io io ooo early SB

I2OL io io ooo late SB, ROB

IO2E io ooo ooo early SB, IQ

IO2L io ooo ooo late SB, IQ, ROB

Cannonical I2OL Pipeline

F D
1

X
1

Y0 Y1 Y2 Y3
PRF

ARF

I
1

write

SB ARF

W C
1 1

SB read/write
PRF read write

ROB writealloc read/dealloc

ROB

1

read

• Add extra C stage for commit at end of pipeline
• Still use scoreboard to centeralize structural/data hazard detection
• Add physical regfile (PRF) and reorder buffer (ROB) between W/C
• PRF keeps uncommited results (a.k.a. future regfile, working regfile)
• Reorder buffer (ROB)

– allocated in-order in D stage
– updated out-of-order in W stage
– deallocated in-order in C stage

• WAW hazards are possible, which we ignore in this topic
• WAR hazards are not possible

Topic 7: Advanced Processors – Out-of-Order Execution 9

4. I2OL: IO Front-End/Issue, OOO Completion, Late Commit

Data Structure: Reorder Buffer

• ROB fields

– V: valid bit (is this entry valid?)
– P: pending bit (instruction in flight targeting this entry)
– V: valid bit (is the dest reg specifier valid?)
– rdest: destination reg specifier

• ROB managed like a queue, implemented with circular buffer

– new instructions allocated ROB entries at tail
– instructions update pending bit out-of-order
– commit stage waits for pending bit of head to be clear

Topic 7: Advanced Processors – Out-of-Order Execution 10

4. I2OL: IO Front-End/Issue, OOO Completion, Late Commit

Example Execution Diagrams

a : mul x1, x2, x3

b : addi x11, x10, 1

c : mul x5, x1, x4

d : mul x7, x5, x6

e : addi x12, x11, 1

f : addi x13, x12, 1

g : addi x14, x12, 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

v

R
eo

rd
er

 B
u

ff
er

p0

p1

p2

p3

p4

p5

p6

rdest

P
h

y
si

ca
l

R
eg

is
te

r
F

il
e

x1

x2

x3

x4

x5

x6

x7

x31

...

x8

x9

x10

...

x1

x2

x3

x4

x5

x6

x7

x31

...

x8

x9

x10

...

A
rc

h
it

ec
tu

ra
l

R
eg

is
te

r
F

il
e

x11

x12

x13

x14

x11

x12

x13

x14

1

2

3

4

21

1

2

3

4

21

p

Topic 7: Advanced Processors – Out-of-Order Execution 11

4. I2OL: IO Front-End/Issue, OOO Completion, Late Commit

We can use a table to compactly illustrate how the ROB works.

ROB Entry

cycle D I 0 1 2 3

0

1 a

2 b a x1*

3 c b | x11*

4 | | x5*

5 | | |

6 d c | x11 |

7 | | | x7*

8 x1 | | |

9 • | |

10 e d | |

11 f e x12* | |

12 g f | x13* x5 |

13 | | x14* |

14 g x12 | | |

15 | x13 | |

16 | | | x7

17 • | x14

18 • |

19 •

Topic 7: Advanced Processors – Out-of-Order Execution 12

4. I2OL: IO Front-End/Issue, OOO Completion, Late Commit

Handling Precise Exceptions

Late commit means exceptions are handled in the C stage at the end of
the pipeline. What if instruction a causes an exception?

a : mul x1, x2, x3

b : addi x11, x10, 1

c : mul x5, x1, x4

d : mul x7, x5, x6

e : addi x12, x11, 1

f : addi x13, x12, 1

g : addi x14, x12, 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Need to copy values from ARF to PRF on an exception before
redirecting the front of the pipeline to the exception handler. This copy
may take multiple cycles. Also possible to include additional bits in I
stage to indicate wether the most recent version of every given
architectural register is in the ARF or PRF.

Topic 7: Advanced Processors – Out-of-Order Execution 13

5. IO2E: IO Front-End, OOO Issue/Completion, Early Commit

5. IO Front-End, OOO Issue/Completion, Early Commit

Front-End or Writeback or Data
Fetch/Decode Issue Completion Commit Structures

I3L io io io late

I2OE io io ooo early SB

I2OL io io ooo late SB, ROB

IO2E io ooo ooo early SB, IQ

IO2L io ooo ooo late SB, IQ, ROB

Cannonical IO2E Pipeline

F D
1

X

Y0 Y1 Y2 Y3
ARF

I
1

SB

W
1 1

SB read/write
ARF read write

IQ writealloc

IQ

read/dealloc

1

• Still use scoreboard to centeralize structural/data hazard detection
• Add issue queue (IQ) between D and I stages

– allocated in-order in D stage
– updated out-of-order in W stage
– deallocated out-of-order in I stage

• Do not necessarily want to wait for W stage to update IQ; we will
need to assume aggressive bypassing which requires combinational
communication between last stage of functional unit and I stage

• WAW hazards are possible, which we ignore in this topic
• WAR hazards are possible, which we ignore in this topic

Topic 7: Advanced Processors – Out-of-Order Execution 14

5. IO2E: IO Front-End, OOO Issue/Completion, Early Commit

Data Structure: Issue Queue

• IQ fields

– V: valid bit (is this entry valid?)
– op: instruction opcode
– imm immediate value
– V: valid bit (is the dest/src reg specifier valid?)
– P: pending bit (is the src data ready?)
– rdest/rsrc: destination/source reg specifiers

• IQ managed like a queue, implemented with circular buffer

– new instructions allocated IQ entries at tail
– instructions leave IQ out-of-order when ready

• Wakeup Logic: An instruction needs to update pending bits of
dependent instructions when that instruction is in W stage (actually
need to do this earlier to enable aggressive bypassing)

• Select Logic: Determine which instructions are ready to be issued,
and then select which one to actually issue. Usually issue oldest
ready instruction.

inst_ready = (!val_src0 || !p_src0)
&& (!val_src1 || !p_src1)
&& no structural hazards

Topic 7: Advanced Processors – Out-of-Order Execution 15

5. IO2E: IO Front-End, OOO Issue/Completion, Early Commit

Example Execution Diagrams

a : mul x1, x2, x3

b : addi x11, x10, 1

c : mul x5, x1, x4

d : mul x7, x5, x6

e : addi x12, x11, 1

f : addi x13, x12, 1

g : addi x14, x12, 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

op imm v v v pprdest rsrc0 rsrc1

Is
su

e
Q

u
eu

e

x1

x2

x3

x4

x5

x6

x7

x31

...

x8

x9

x10

...

x11

x12

x13

x14

1

2

3

4

21

A
rc

h
it

ec
tu

ra
l

R
eg

is
te

r
F

il
e

Topic 7: Advanced Processors – Out-of-Order Execution 16

5. IO2E: IO Front-End, OOO Issue/Completion, Early Commit

We can use a table to compactly illustrate how the IQ works.

IQ Entry

cycle D I 0 1 2

0

1 a

2 b a x1/x2/x3

3 c b x11/x10

4 d x5/x1*/x4

5 e | x7/x5*/x6

6 f c • | x12/x11

7 g e x13/x12 | •

8 f • | x14/x12

9 | |

10 d • |

11 g •

12

13

14

15

16

17

18

19

Topic 7: Advanced Processors – Out-of-Order Execution 17

5. IO2E: IO Front-End, OOO Issue/Completion, Early Commit

Handling Precise Exceptions

Early commit requires the commit point to be in the decode stage.
What if instruction e causes an exception?

a : mul x1, x2, x3

b : addi x11, x10, 1

c : mul x5, x1, x4

d : mul x7, x5, x6

e : addi x12, x11, 1

f : addi x13, x12, 1

g : addi x14, x12, 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Performance Benefit of OOO Execution

Does IO2E improve performance compared to I2OE? Let’s assume all
instructions are in issue queue.

a : mul x1, x2, x3

b : addi x11, x10, 1

c : mul x5, x1, x4

d : mul x7, x5, x6

e : addi x12, x11, 1

f : addi x13, x12, 1

g : addi x14, x12, 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Topic 7: Advanced Processors – Out-of-Order Execution 18

5. IO2E: IO Front-End, OOO Issue/Completion, Early Commit

Centralized vs. Distributed IQs

IQs can either be centralized or distributed across functional units.
Distributed IQs are sometimes called reservation stations. This can
naturally enable superscalar execution.

F D
1

X

Y0 Y1 Y2 Y3Iy
1

W
1

1

IQy

1
Ix

1 1IQx

Topic 7: Advanced Processors – Out-of-Order Execution 19

6. IO2L: IO Front-End, OOO Issue/Completion, Late Commit

6. IO Front-End, OOO Issue/Completion, Late Commit

Front-End or Writeback or Data
Fetch/Decode Issue Completion Commit Structures

I3L io io io late

I2OE io io ooo early SB

I2OL io io ooo late SB, ROB

IO2E io ooo ooo early SB, IQ

IO2L io ooo ooo late SB, IQ, ROB

Cannonical IO2L Pipeline

F D
1

X

Y0 Y1 Y2 Y3
I

1

SB

1 1

IQ alloc

IQ

read/dealloc

1

PRF

write

ARF

W C
1 1

write

write read/dealloc

ROB

ARF

SB read/write
PRF read

ROB alloc

read
read

read/dealloc

• Use scoreboard to centeralize structural/data hazard detection
• Use IQ to enable out-of-order issue, ROB to enable late commit
• Overall organization:

– In-order fetc/decode (front-end of pipeline)
– Out-of-order issue/completion (middle of pipeline)
– In-order commit (back-end of pipeline)

• WAW hazards are possible, which we ignore in this topic
• WAR hazards are possible, which we ignore in this topic

Topic 7: Advanced Processors – Out-of-Order Execution 20

6. IO2L: IO Front-End, OOO Issue/Completion, Late Commit

Example Execution Diagrams

a : mul x1, x2, x3

b : addi x11, x10, 1

c : mul x5, x1, x4

d : mul x7, x5, x6

e : addi x12, x11, 1

f : addi x13, x12, 1

g : addi x14, x12, 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Handling Precise Exceptions

Late commit means exceptions are handled in the C stage at the end of
the pipeline. What if instruction a causes an exception?

a : mul x1, x2, x3

b : addi x11, x10, 1

c : mul x5, x1, x4

d : mul x7, x5, x6

e : addi x12, x11, 1

f : addi x13, x12, 1

g : addi x14, x12, 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Topic 7: Advanced Processors – Out-of-Order Execution 21

6. IO2L: IO Front-End, OOO Issue/Completion, Late Commit

Out-of-Order Dual-Issue Processor

Assume we can fetch, decode, issue, writeback, and commit two
instructions per cycle.

a : mul x1, x2, x3

b : addi x11, x10, 1

c : mul x5, x1, x4

d : mul x7, x5, x6

e : addi x12, x11, 1

f : addi x13, x12, 1

g : addi x14, x12, 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Topic 7: Advanced Processors – Out-of-Order Execution 22

