ECE 4750 Computer Architecture
Topic 8: Advanced Processors — Register Renaming

http://www.csl.cornell.edu/courses/eced4750
School of Electrical and Computer Engineering
Cornell University

revision: 2024-12-02-12-45

List of Problems

1 Short Answer
1.A Physical Register Deallocation
1.B Pointer-Based Register Renaming

1.C Implementing Conditional Moves in IO2L Microarchitecture (Weight x2)

2 Register Renaming
2.A Architectural RAW, WAW, and WAR Dependencies
2.B Pipeline Diagram with Register Renaming
2.C Register Renaming with Pointers inthe IQ/ROB
2.D Register Renaming with Valuesinthe IQ/ROB

A TinyRV1 Canonical Microarchitectures

=~ W NN

N o & O o

ECE 4750 Computer Architecture Topic 8: Advanced Processors — Register Renaming

Problem 1. Short Answer

Part 1.A Physical Register Deallocation

Assume an instruction I_x writes to architectural register r_a and that this architectural register is
renamed to physical register p_x. Clearly explain when physical register p_x is deallocated (and
thus can be reused for renaming some other architectural register) for both register renaming
schemes discussed in lecture. Recall that the pointer-based scheme stores pointers in the issue
queue and the reorder buffer and the value-based scheme stores values in the issue queue and the
reorder buffer.

When can p_x be deallocated for pointer-based register renaming?

When can p_x be deallocated for value-based register renaming?

x1

x2

x3

x4

x5

x6

x7

x8

x9

ECE 4750 Computer Architecture

Part 1.B Pointer-Based Register Renaming

Topic 8: Advanced Processors — Register Renaming

Consider the complete quad-issue IO2L microarchitecture with an in-order front-end and out-
of-order issue/writeback with late commit (see Figure A.7 in Appendix A). Assume we use a

pointer-based register renaming scheme.

Consider the following assembly instruction sequence.

1 sub
2 add
3 add
4 sub
5 sub

x1,
x4,
x4,
x8,
x1,

X2,
x5,
x4,
x9,
X2,

x3
x6
x3
x1
x9

Assume that all five instructions are fetched, decoded, and placed into the issue queue, but that
no instructions are actually issued from the issue queue. Show the state of the register rename

table and the issue queue after all five instructions are in the issue queue. The initial state of
the register rename table is shown below. The p field is for the pending bit and should be one for
pending values and zero if the value is ready. Assume that all registers are initially ready (i.e., not
pending) and that free physical registers are allocated in numerical order starting with physical
register p9 up to p20.

Physical
P Reg
0 pO
0 pl
0 p2
0 p3
0 p4
0 p5
0 p6
0 p7
0 p8

Initial State of
Register
Rename Table

x1

x2

x3

x4

x5

x6

x7

x8

x9

Physical
P Reg

State of Rename

Table after All
Instructions

Fetched/Decoded

Op Dest P Src0 P Srcl

State of Issue Queue after All Instructions Fetched/Decoded

ECE 4750 Computer Architecture Topic 8: Advanced Processors — Register Renaming

Part 1.C Implementing Conditional Moves in IO2L Microarchitecture (Weight x2)

Consider the complete quad-issue IO2L microarchitecture with an in-order front-end and out-of-
order issue/writeback with late commit (see Figure A.7 in Appendix A). This microarchitecture
includes pointer-based register renaming, memory disambiguation with out-of-order load/store
issue, branch prediction, and speculative execution.

In lecture, we discussed conditional moves as a simple form of predication to help turn control
flow into data flow. For example, the following conditional move instruction (movz) only copies the
source register to the destination register if a second source register is zero.

movz rd, rsil, rs2 if (R[rs1] ==0) R[rd] + R[rs2]

Study the instruction semantics for movz very carefully before continuing. Assume movz instruc-
tions use the X-pipe and perform the comparison in the X stage. Assume we make any additional
modifications to the quad-issue IO2L microarchitecture that are necessary to enable correct execu-
tion of movz instructions. Consider the following assembly instruction sequence.

1 addi x1, x0, 13

2 addi x2, x0, 1

3 mul x3, x4, x5 # assume R[x4] is 2, R[x5] is 3
+ mul x3, x3, x6 # assume R[x6] is 3

5 movz x3, x1, x2

6 addi x7, x3, 1

What should be the correct value of register x7 after executing this assembly sequence?

Draw a pipeline diagram illustrating how this instruction sequence executes on the modified
IO2L microarchitecture. Ensure that your pipeline diagram will produce the correct value of
register 7 as deteremined above. Use arrows on the pipeline diagram to illustrate RAW depen-
dencies through registers.

— Remember that this microarchitecture is quad-issue! —

addi x1, x0, 13

addi x2, x0, 1

mul x3, x4, x5

mul x3, x3, x6

movz x3, x1, x2

addi x7, x3, 1

ECE 4750 Computer Architecture Topic 8: Advanced Processors — Register Renaming

Explain what modifications need to be made to the IO2L microarchitecture to enable the pipeline
diagram on the previous page and thus enable correct execution of movz instructions. If possible,
your modifications should fit within the mechanisms already provided in the complete quad-issue
IO2L microarchitecture shown in Figure A.7 (e.g., your modifications should not require any new
data structures). If you need to modify a data structure, feel free to sketch the modified data struc-
ture below to more clearly indicate what changes need to be made.

ECE 4750 Computer Architecture Topic 8: Advanced Processors — Register Renaming

Problem 2. Register Renaming

In this problem, we will be looking at the detailed microarchitectural state required to implement
register renaming both with pointers and with values in the issue queue and reorder buffer. We
will be executing the following assembly sequence:

1 mul x1, x2, x3
> mul x4, x1, x5
3 add x6, x7, x8
+mul x1, x2, x5
s add x6, x6, x9

For this problem you should assume that each microarchitecture follows the details described in
the lecture notes. Assume a fully-pipelined four-cycle multiplier. Do not assume that all of the
instructions are waiting in the issue queue. You must explicitly fetch and decode each instruction
in-order.

Part 2.A Architectural RAW, WAW, and WAR Dependencies

List the assembly instructions above and clearly draw arrows to indicate the architectural RAW,
WAW, and WAR dependencies between instructions. You must clearly disambiguate the different
types of dependencies.

Part 2.B Pipeline Diagram with Register Renaming

Draw the pipeline diagram for the above assembly code with register renaming for an IO2L mi-
croarchitecture with an in-order front-end, out-of-order issue and writeback/completion with late
commit. Label each column with the cycle number starting with cycle 0.

Part 2.C Register Renaming with Pointers in the IQ/ROB

Create two tables similar to the ones in Figure 1 and 2. Use the tables to show how the microar-
chitectural state (i.e., the rename table, free list, issue queue, and reorder buffer) changes over time
for a register renaming scheme with pointers in the issue queue and reorder buffer. Assume that
the physical register file and the architecture register file are combined into a single unified register
file (i.e., instead of copying values into a separate architecture register file in commit, we simply
update pointers in the architectural rename table). The execution should directly correspond to the
pipeline diagram from the previous part. The first three cycles have already been filled in for you.
Carefully handle deallocating physical registers and placing them back on the free list.

Fill in the D, I, W, C columns with the instruction number (1-5) to indicate when each instruction is
in the corresponding stage. Rename table entries should indicate the correct architectural to phys-
ical mapping. Use an asterisk symbol (*) to indicate when a rename table entry is pending. Issue
queue entries should be of the form pdest/psrc0/psrc1 where pdest is the physical destination register
specifier and psrcO/psrcl are the physical source register specifiers. Use an asterisk symbol (*) to
indicate when a physical source register specifier is pending (i.e., the source data is not ready in the
physical register file yet). Note that to simplify our tables, you only need to show the issue queue
entry on the cycle after that entry is written into the issue queue (this allows us to represent the
issue queue as a single column). The reorder buffer entries should be of the form pdest/adest/ppreg

ECE 4750 Computer Architecture Topic 8: Advanced Processors — Register Renaming

Stage RT
Cycdde DI W C xI x2 x3 x4 x5 x6 x7 x8 x9 Free List IQ
0 pO0 pl p2 p3 p4 p5 p6 p7 p8 p9, pA, pB, pC, pD
1 1 : oot pY9,pA, pB, pC, pD
2 21 po* o+ = : pApB pCpD p9/pl/p2

Figure 1: Microarchitectural State (RT/FL/IQ) for Reg Renaming with Pointers in the IQ/ROB

ROB
Cycle 0 1 2 3 4
0
1

2 p9*/x1/p0

Figure 2: Microarchitectural State (ROB) for Reg Renaming with Pointers in the IQ/ROB

where pdest is physical destination register specifier, adest is the architectural destination register
specifier, and ppreg is the previous physical register specifier. Use an asterisk (*) symbol to indicate
when an entry in the ROB is not finished. You can use a vertical line (1) or vertical dots (:) to indi-
cate that a field does not change on that cycle. Note that the physical register specifiers are denoted
in hex from p0 to pF. All state should be shown as in the table as it exists at the beginning of the cycle.

Part 2.D Register Renaming with Values in the IQ/ROB

Create a table similar to the one in Figure 3. Use the table to show how the microarchitectural state
(i.e., RT, IQ, ROB) changes over time for a register renaming scheme with values in the issue queue
and the reorder buffer. The execution should directly correspond to the pipeline diagram from the
previous part. The first column and first three cycles have already been filled in for you. Carefully
handle deallocating physical registers and placing them back on the free list.

Fill in the D, I, W, C columns with the instruction number (1-5) to indicate when each instruction
is in the corresponding stage. Renaming table entries should indicate the correct architectural to
physical mapping. If there is no mapping in the rename table (i.e., that entry is invalid), then we get
the value from the architectural register file. Use an asterisk symbol (*) to indicate when a rename
table entry is pending. Issue queue entries should be of the form pdest/src0/src1 where pdest is the
physical destination register specifier and src0O/srcl are either the physical source register specifiers
or the actual source data. Use the architectural register specifier for the source in the table if the
data is read from the architectural register file and copy it into the issue queue in the decode stage.
Use the physical register specifier if the source is not ready yet. For consistency, use an asterisk
symbol (*) to indicate when a physical source register specifier is pending (i.e., the source data is
being written by an instruction in-flight that has not finished yet). Note that to simplify our tables,

ECE 4750 Computer Architecture Topic 8: Advanced Processors — Register Renaming

Stage RT ROB
Cycle D I W C x1 x2 x3 x4 x5 x6 x7 x8 x9 I1Q 0 1 2 3 4
0
1 1
2 21 p0* p0/x2/x3 p0*/x1

Figure 3: Microarchitectural State for Reg Renaming with Values in the IQ/ROB

you only need to show the issue queue entry on the cycle after that entry is written into the issue
queue (this allows us to represent the issue queue as a single column). The reorder buffer entries
should be of the form pdest/adest where pdest is physical destination register specifier (this is always
the same as the ROB entry number) and adest is the architectural destination register specifier. You
can use a vertical line (1) or vertical dots (:) to indicate that a field does not change on that cycle.
All state should be shown as in the table as it exists at the beginning of the cycle.

ECE 4750 Computer Architecture Topic 8: Advanced Processors — Register Renaming

Appendix A: TinyRV1 Canonical Microarchitectures

YorHYTHH Y2HR Y3 HE 25
{gxo{}xﬂ}xﬂ}m

Figure A.1: I3L Microarchitecture for MUL, ADDU, ADDIU

[B | ARF
YOHHY1HHY2HH Y3
F U Dl ! %E 1

X Il

Figure A.2: I20E Microarchitecture for MUL, ADDU, ADDIU

[sB | [PRF] ROB [ARF]
YorHY1HHY2HHY3
W, {whi{c

Figure A.3: I20L Microarchitecture for MUL, ADDU, ADDIU

1Q [SB] ARF
YOHHYTHH Y2 HH Y3
Wk, w

Figure A.4: IO2E Microarchitecture for MUL, ADDU, ADDIU

B UyolH v HHva [ya], = ros e
P Wl <

Figure A.5: IO2L Microarchitecture for MUL, ADDU, ADDIU

FHAHDHH I

ECE 4750 Computer Architecture Topic 8: Advanced Processors — Register Renaming

AHYoHHY1HR Y2HR Y3 H}
BTB BHT Il X i ROB ARF
FRHD Rl T — AW C
HHLOHHL1H]
FSB
s

Figure A.6: Complete I20L Microarchitecture (single issue: n = 1; quad issue: n = 4)

AHYoHHY1HH Y2 H Y3}
[BTB| IB;THHIQ] X [T ART
FrHDHR 1 — 4 C
HHLoHHL1]
e

Figure A.7: Complete IO2L Microarchitecture (single issue: n = 1; quad issue: n = 4)

10

