Topic 10:
Side Channels, Meltdown,
and Spectre, Oh My!

ECE 4750 Computer Architecture
0@0} Prof. Anne Bracy
SPECTRE

Based on slides by D. Zagieboylo, M. Hill, K. Sekniqi

Side Channels

* An extra way to learn information about a program’s execution

 Usually a way for an attacker to bypass security mechanisms

Side Channels

* An extra way to learn information about a program’s execution

 Usually a way for an attacker to bypass security mechanisms

* Power consumption

* Electromagnetic Radiation
* Responsiveness / Faults

* Timing

* Timing attacks are a concern:

Can be executed remotely
Hard to prevent all secret-dependent timing

Small differences can be amplified with
repetition
Very stealthy

Timing Side Channels

What influences a program’s execution time?
* Dynamic instruction count
* Which branches get executed
* Cycles perinstruction
* Variable latency instructions (e.g., division)
* TLB Hit or Miss (Page Fault)
* Cache Hit or Miss
 Correct vs. Incorrect Speculation
* Clock frequency
* DVFS (Dynamic Voltage-Frequency Scaling)

Cache Timing Channel

* very common side channel

 Fast/easy to execute
* High signal to noise (don’t have to repeat much to be sure it worked)

* How it works: Prime + Probe;:

1. Setup cache state
2. Runvictim
3. Time memory accesses

“Which cache set did the victim access?”

Prime + Probe Example idx

//Attacker: (e.g., user process)

Tag

char arr[N_CACHE_SETS*LINE_SIZE]; 63 [arr[63]
for (int i = @; 1 < N_CACHE_SETS; i++) {

arr[i*LINE_SIZE] = 0; <uum 62 [&arr[62]
: 61 |&arr[61]

2 |&arr[0]

& (1]

Cache is now completely 1 [&arr[1]
filled with attacker's array. o [garr[e]

Prime + Probe Example idx R
Char arr[N CACHE SETSCLINE ST7E); 63 [sarrie3]
o (12:rE1:L?§|Eis;zETCéCg;E_SETS; o 62 |&arr[62]
}/Call Victim Code (e.g., via syscall) 61 |&victim[secret]
\./iétim[secr‘et] = data; e

2 |&arr[0]

1 |&arr[1]

O |&arr[9]

Prime + Probe Example)4 Tag

//Attacker: (e.g., user process)
char arr[N_CACHE SETS*LINE SIZE]; 63 [8arr[63]
for (int i = @; i < N_CACHE_SETS; i++) {
arr[i*LINE_SIZE] = ©; 62 [&arr[62]
}
//Call Victim Code (e.g., via syscall) 61 [&arr[61]
victim[secret] = data; . « » IO
//Return to Attacker: 2 |&arr[0]
for (int i = @; i1 < N_CACHE_SETS; i++) { —
time_start(); 1 |&arr[1’
arr[i*LINE_SIZE] = 0; <uum —
time _end(); 9 |&arr[e’
} | Y

Hit

Hit

MISY

Hit

Hit

Hit

Prime + Probe Example

Cache Hit (Fast!)
e Victim was not here

Cache MISS (Slow) —

idx Tag

63 |&arr[63]

62 |&arr[62]

» Attacker learns index bits of secret
memory address

&victim[secret] is Ox???? 3f ??

Can be helpful:

* ifyoualready know &victim

« orifyouonlyneed to limit the number
of possibilities for secret

—> 571 [&arr[61]

Hit

Hit

MISY

Hit

Hit

Hit

Cache Timing Channels

In reality, more complicated Solutions?
* Multi-level caches
* Associativity I@ Add more noise

e Hardware Prefetchers (you’ll lose the arms race usually)

* Virtual Memory (Address Translation o
Y) Partition Cache

 Non-secret memory accesses (noise) (doesn’t help if victim & attacker
Can still execute $ timing attacks are in same user-space process -
* Reverse Engineering of HW costs efficiency)

» Repeated execution of attack ,
Avoid secret-dependent LW/SW

e Statistical analysis (hard (or impossible) to do)

» Other attacks (e.i., Flush+Reload)

Recent Events - Transient Execution Attacks

» 2018 D);
& Spectre - [Jann Horn, Google Project Zero] o

Also , independently, Paul Kocher

Both are microarchitectural attacks that allow the user to exploit speculative
execution to learn secret data

Make S timing channels super easy to exploit - nearly NO statistical analysis
necessary, can pick any address you want to leak

. affects almost every Intel chip made since 1995, and some ARM chips
Spectre affects Everychip, Everywhere, All at once.

Intel® pushes out several microcode (HW) patches that...don’t work and cause BSOD

» OS, Compiler & Browser Mitigations (KPTI, SLH, Retpoline) start to be rolled out

Meltdown and Spectre: ‘worst ever' CPU
bugs affect virtually all computers

4 DATA CENTER SOFTWARE SECURITY DEVOPS BUSINESS PERSONAL TECH SCIENCE EN

Everything from smartphones and PCs to cloud computing affected by Security
major security flaw found in Intel and other processors - and fix could Meltdown/Spectre week three: World
slow devices

still knee-deep in something nasty

And years away from safety

By Simon Sharwood, APAC Editor 22 Jan 2018 at 04:31 1200

Spectre and Meltdown processor security flaws - ex

It is now almost three weeks since The Register revealed the chip design
flaws that Google later confirmed and the world still awaits certainty
about what it will take to get over the silicon slip-ups.

The short version: on balance, some steps forward have been taken but
last week didn't offer many useful advances.

In the "plus" column, Microsoft and AMD got their act together to resume
the flow of working fixes. Vendors started to offer tools to manage the
chore of fixing the twin flaws, such as VMware’s dashboard kit for its
VRealize Operations automation tools.

Typing

The sky is falling again: Meltdown and
Spectre

Published on January 5, 2018

John Jiang + Follow ~ ~ R
’ Director of SF Operations Security at SAP ‘\é) [} ‘\E) [} ‘\é}‘

7 articles

Recent Events - Transient Execution Attacks

» 2018 {/
& Spectre - [Jann Horn, Google Project Zero] o

Also , independently, Paul Kocher

* 2019

 Spectre Variants (Speculative Store Bypass, Foreshadow, Zombieload)
continue to haunt us

* Numerous new microarchitectural designs to avoid Spectre are proposed at high
profile research conferences

* No new word from Intel, AMD, ARM, etc. on Spectre-secure designs

* 2020-2022
» Even more Spectre attacks. Old defenses broken. New defenses proposed. Repeat.

Recent Events - Transient Execution Attacks

» 2018 {/
& Spectre - [Jann Horn, Google Project Zero] o

Also , independently, Paul Kocher

* 2018-19
» OS patches for released
» Chipmakers plan to fix in future HW

» SW patches for Spectre_v1 & v2 developed.
Mostly unused outside Google Chrome & Cryptographic libraries

* 2020-2022
 Spectre patches gain more traction, incorporated into LLVM
* More variants discovered, highlights need for new design, not just adhoc patches

« Still an open problem, the attack-defense vicious cycle continues.

Background on Memory space ..

The virtual address space of each process 0S Memory
contains user-level memory and

This is convenient for handling exceptions and
making system calls (just change to privileged
mode and start fetching). User-space memory

User-level process cannot load from OS
memory. This is a permission violation.

0x00000000 reserved

Background on Memory Checks e

X = *target_addr; // user-level code 0S Memory
target_addr

—>TLB detects illegal memory violation
—>instruction will throws an exception

—>seg fault kills the processWHEN does
detection & suppression happen?? User-space memory

EARLY: AMD seems to suppress at TLB access
LATE: Intel seems to suppress after cache access

* Architectural state not changed
* Micro-architectural state is changed! &g el N rcserved

Meltdown - In Detail

Dynamically Scheduled Processors
* Fetch & Decode instructions in order

e Execute Qut-of-Order MEM Unit
e Commit In-Order

o

%‘ ALU I
Mul/Div

Meltdown - In Detail

Dynamically Scheduled Processors 1) If this
. _ Instruction
2) Squash all these instructions causes an
2 MEM Unit exception

Mul/Div

Meltdown - In Detail

Meltdown Vulnerability

* lllegal Memory Load still updates $

* Ifillegal load is : |
process gets to keep running MEM Unit
(no segfault)

Mul/Div

Meltdown - In Detail

e Meltdown Vulnerability 0S Memory

* lllegal Memory Load still updates $ target_addr,

* Ifillegal load is
process gets to keep runnmg

(no segfault) probe[x*4096]

1. syscall(); < causes PC+4 etc. to be squashed probe

) _ User-space memory
2. x = *target_addr; < Executes 000, value available in

bypass network
3. y = probe[x*4096];

< dependent load updates $

4. //another thread executes $ timing attack

(prime+probe)to learn some bits of x exeeaeeeee

Meltdown Consequences
» User process can easily read all of OS Memory

* Solution: unmap most of 0S memory from PT 0S Memory
* Syscalls take longer to handle
* Trap to OS
* Trap handler loads OS page table, flushes TLB
 Handle trap probe

User-space memory

Loads User page table, flushes TLB
Return to User

* 5% overhead most programs

* 30% for syscall-heavy programs

Spectre in 1 Slide

unsigned int a;
if (a < xarray_len) {
/| Should only execute if x[a] is in bounds
b = x[a];
z = *b;

, SN

The Pirate Bap

%

» Extremely common check

Bounds-check-bypass

» Speculation allows body to

temporarily execute when
a >= Xxarray_len

 Speculative execution
modifies $ state
(just like meltdown)

* Attacker canread arbitrary
(user space) memory via
$ timing channel

software &
hardware fixes exist

@

MELTDOWN

scary

¥

both leak data through S timing channel

* Exploits out-of-order execution
after exceptions

* |llegal memory accesses after an
exception still update S

* Breaks Kernel Isolation:
Allows user process to read any
part of OS’s memory (if mapped)

» Exploits speculative execution across
branches

* Attacker manipulates branch predictor
to speculatively execute target
instructions

* Breaks software sandboxing:
Allows user process to violate
application-level isolation (within a
single process

https://danielmiessler.com/blog/simple-explanation-difference-meltdown-spectre/

Takeaways for Computer Architects

Architecture: timing-independent functional behavior of a computer
Micro-architecture: implementation techniques to tperformance

These choices have consequences!

What if a computer that is architecturally correct can leak protected
information via its micro-architecture?

Perhaps our definition of “architecturally correct” needs re-thinking...

Some References

New York Times: https://www.nytimes.com/2018/01/03/business/computer-flaws.html

Meltdown paper: https://meltdownattack.com/meltdown.pdf
Spectre paper: https://spectreattack.com/spectre.pdf

A blog separating the two bugs: https://danielmiessler.com/blog/simple-explanation-
difference-meltdown-spectre/

Google Blog: https://security.googleblog.com/2018/01/todays-cpu-vulnerability-what-you-
need.html and https://googleprojectzero.blogspot.com/2018/01/reading-privileged-
memory-with-side.html

Industry News Sources: https://arstechnica.com/gadgets/2018/01/whats-behind-the-
intel-design-flaw-forcing-numerous-patches/ and
https://www.theregister.co.uk/2018/01/02/intel cpu design flaw/

https://www.nytimes.com/2018/01/03/business/computer-flaws.html
https://meltdownattack.com/meltdown.pdf
https://spectreattack.com/spectre.pdf
https://danielmiessler.com/blog/simple-explanation-difference-meltdown-spectre/
https://danielmiessler.com/blog/simple-explanation-difference-meltdown-spectre/
https://security.googleblog.com/2018/01/todays-cpu-vulnerability-what-you-need.html
https://security.googleblog.com/2018/01/todays-cpu-vulnerability-what-you-need.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://arstechnica.com/gadgets/2018/01/whats-behind-the-intel-design-flaw-forcing-numerous-patches/
https://arstechnica.com/gadgets/2018/01/whats-behind-the-intel-design-flaw-forcing-numerous-patches/
https://www.theregister.co.uk/2018/01/02/intel_cpu_design_flaw/

