
Tiny RISC-V Instruction Set Architecture

Christopher Batten

The Tiny RISC-V ISA is a subset of the 32-bit RISC-V ISA suitable for teaching. More specifically,
the Tiny RISC-V ISA is a subset of the RV32IM ISA. The Tiny RISC-V ISA is divided into two versions:
TinyRV1 includes just eight instructions and is suitable for lecture notes, problem sets, and exams,
while TinyRV2 includes 34 instructions and is suitable for running simple C programs. This document
provides a compact description of the Tiny RISC-V ISA, but it should be read in combination with
the full RISC-V ISA manuals, which can be found on Canvas. The full RISC-V ISA manuals include a
wealth of useful information about why the architecture designers made specific design decisions.

Table of Contents

1 Architectural State 2

2 Tiny RISC-V Instruction Overview 4

3 Tiny RISC-V Instruction and Immediate Encoding 5
3.1 Tiny RISC-V Instruction Formats . 5
3.2 Tiny RISC-V Immediate Formats . 5

4 Tiny RISC-V Instruction Details 6
4.1 Control/Status Register Instructions . 6
4.2 Register-Register Arithmetic Instructions . 7
4.3 Register-Immediate Arithmetic Instructions . 11
4.4 Memory Instructions . 14
4.5 Unconditional Jump Instructions . 15
4.6 Conditional Branch Instructions . 16

5 Tiny RISC-V Privileged ISA 19

6 Tiny RISC-V Pseudo-Instructions 21

1

1 Architectural State

Data Formats

Tiny RISC-V only supports 4B signed and unsigned integer values. There are no byte nor half-word
values and no floating-point.

General Purpose Registers

There are 31 general-purpose registers x1-x31 (called x registers), which hold integer values. Register
x0 is hardwired to the constant zero. Each register is 32 bits wide. Tiny RISC-V uses the same calling
convention and symbolic register names as RISC-V:

Register ABI Name Description

x0 zero The constant value 0

x1 ra
Return Address
(caller saved)

x2 sp
Stack Pointer
(callee saved)

x3 gp Global Pointer

x4 tp Thread Pointer

x5 t0

Temporary Register
(caller saved)

x6 t1

x7 t2

x8 s0/fp
Saved Register/Frame
Pointer (callee saved)

x9 s1
Saved Register
(callee saved)

x10 a0 Function Arguments
and/or Return values

(caller saved)x11 a1

x12 a2

Function Arguments
(callee saved)

x13 a3

x14 a4

x15 a5

Register ABI Name Description

x16 a6
Function Arguments

(caller saved)
x17 a7

x18 s2

Saved Registers
(callee saved)

x19 s3

x20 s4

x21 s5

x22 s6

x23 s7

x24 s8

x25 s9

x26 s10

x27 s11

x28 t3

Temporary Register
(caller saved)

x29 t4

x30 t5

x31 t6

2

Memory

Tiny RISC-V only supports a 1MB virtual memory address space from 0x00000000 to 0x000fffff.
The result of memory accesses to addresses larger than 0x000fffff are undefined.

A key feature of any ISA is identifying the endianness of the memory system. Endianness specifies
if we load a word in memory, what order should those bytes appear in the destination register. Assume
the letter 0x0a is at byte address 0x0, the letter 0x0b is at byte address 0x1, the letter 0x0c is at byte
address 0x2, and the letter 0x0d is at byte address 0x3. If we load a four-byte word from address 0x0,
there are two options: the destination register can either hold 0x0a0b0c0d (big endian) or 0x0d0c0b0a
(little endian). There is no significant benefit of one system over the other. Tiny RISC-V uses a
little endian memory system.

3

2 Tiny RISC-V Instruction Overview

Here is a brief list of the instructions which make up both versions of the Tiny RISC-V ISA, and then
some discussion about the differences between the two versions.

TinyRV1

TinyRV1 contains a very small subset of the TinyRV2 ISA suitable for illustrating how small assembly
sequences execute on various microarchitectures in lecture, problem sets, and exams.

• Register-Register Arithmetic Instructions: ADD, MUL

• Register-Immediate Arithmetic Instructions: ADDI

• Memory Instructions: LW, SW

• Unconditional Jump Instructions: JAL, JR

• Conditional Branch Instructions: BNE

TinyRV2

TinyRV2 is suitable for executing simple C programs that do not use system calls.

• Register-Register Arithmetic Instructions: ADD, SUB, AND, OR, XOR, SLT, SLTU, SRA,
SRL, SLL, MUL

• Register-Immediate Arithmetic Instructions: ADDI, ANDI, ORI, XORI, SLTI, SLTIU,
SRAI, SRLI, SLLI, LUI, AUIPC

• Memory Instructions: LW, SW

• Unconditional Jump Instructions: JAL, JALR

• Conditional Branch Instructions: BEQ, BNE, BLT, BGE, BLTU, BGEU

• Control/Status Register Instructions: CSRR, CSRW (proc2mngr, mngr2proc, stats en,
coreid, numcores)

Differences

TinyRV1 includes the JR instruction, but technically this is not a real instruction but is instead a
pseudo-instruction for the following usage of JALR:

jalr x0, rs1, 0

The JALR instruction is a bit complicated, and we really only need the JR functionality to explain
function calls in TinyRV1. So TinyRV1 only includes the JR pseudo-instruction, while TinyRV2 includes
the full JALR instruction.

CSRR and CSRW are also pseudo-instructions in the full RV32IM ISA for specific usage of the CSRRW
and CSRRS instructions. The full CSRRW and CSRRS instructions are rather complicated and we don’t
actually need any functionality beyond what CSRR and CSRW provide. TinyRV2 only includes the CSRR
and CSRW pseudo-instructions.

4

3 Tiny RISC-V Instruction and Immediate Encoding

The Tiny RISC-V ISA uses the same instruction encoding as RISC-V. There are four instruction types
and five immediate encodings. Each instruction has a specific instruction type, and if that instruction
includes an immediate, then it will also have an immediate type.

3.1 Tiny RISC-V Instruction Formats

3.2 Tiny RISC-V Immediate Formats

RISC-V has an asymmetric immediate encoding, which means that the immediates are formed by
concatenating different bits in an asymmetric order based on the specific immediate formats. Note that
in RISC-V, all immediates are always sign extended, and the sign-bit for the immediate is always in bit
31 of the instruction.

The following diagram illustrates how to create a 32-bit immediate from each of the five immediate
formats. The fields are labeled with [n] to indicate that bit(s) n from the instruction bits are used to
construct the field. ←[n]→ is used to indicate repeating bit n of the instruction to fill that field, and
z is used to indicate bit(s) which is always set to zero.

5

4 Tiny RISC-V Instruction Details

For each instruction we include a brief summary, assembly syntax, instruction semantics, instruction
and immediate encoding format, and the actual encoding for the instruction. We use the following
conventions when specifying the instruction semantics:

• R[rx]: General-purpose register (GPR) value for register specifier rx

• CSR[src]: Control/status register value for register specifier src

• sext: Sign extend to 32 bits

• M 4B[addr]: 4-byte memory value at address addr

• PC: Current program counter

• <s: Signed less-than comparison

• ≥s: Signed greater than or equal to comparison

• <u: Unsigned less-than comparison

• ≥u: Unsigned greater than or equal to comparison

• imm: Immediate, according to the immediate type

4.1 Control/Status Register Instructions

CSRR

• Summary: Move value in control/status register to GPR

• Assembly: csrr rd, csr

• Semantics: R[rd] = CSR[csr]

• Format: I-type, I-immediate

The control/status register read instruction is used to read a CSR and write the result to a GPR.
The CSRs supported in TinyRV2 are listed in Section 5. Note that in RISC-V CSRR is really a pseudo-
instruction for a specific usage of CSRRS, but in TinyRV2 we only support the subset of CSRRS captured
by CSRR. See Section 6 for more details about pseudo-instructions.

6

CSRW

• Summary: Move value in GPR to control/status register

• Assembly: csrw csr, rs1

• Semantics: CSR[csr] = R[rs1]

• Format: I-type, I-immediate

The control/status register write instruction is used to read a GPR and write the result to a CSR.
The CSRs supported in TinyRV2 are listed in Section 5. Note that in RISC-V CSRW is really a pseudo-
instruction for a specific usage of CSRRW, but in TinyRV2 we only support the subset of CSRRW captured
by CSRW. See Section 6 for more details about pseudo-instructions.

4.2 Register-Register Arithmetic Instructions

ADD

• Summary: Addition with 3 GPRs, no overflow exception

• Assembly: add rd, rs1, rs2

• Semantics: R[rd] = R[rs1] + R[rs2]

• Format: R-type

SUB

• Summary: Subtraction with 3 GPRs, no overflow exception

• Assembly: sub rd, rs1, rs2

• Semantics: R[rd] = R[rs1] - R[rs2]

• Format: R-type

7

AND

• Summary: Bitwise logical AND with 3 GPRs

• Assembly: and rd, rs1, rs2

• Semantics: R[rd] = R[rs1] & R[rs2]

• Format: R-type

OR

• Summary: Bitwise logical OR with 3 GPRs

• Assembly: or rd, rs1, rs2

• Semantics: R[rd] = R[rs1] | R[rs2]

• Format: R-type

XOR

• Summary: Bitwise logical XOR with 3 GPRs

• Assembly: xor rd, rs1, rs2

• Semantics: R[rd] = R[rs1] ˆ R[rs2]

• Format: R-type

8

SLT

• Summary: Record result of signed less-than comparison with 2 GPRs

• Assembly: slt rd, rs1, rs2

• Semantics: R[rd] = (R[rs1] <s R[rs2])

• Format: R-type

This instruction uses a signed comparison.

SLTU

• Summary: Record result of unsigned less-than comparison with 2 GPRs

• Assembly: sltu rd, rs1, rs2

• Semantics: R[rd] = (R[rs1] <u R[rs2])

• Format: R-type

This instruction uses an unsigned comparison.

SRA

• Summary: Shift right arithmetic by register value (sign-extend)

• Assembly: sra rd, rs1, rs2

• Semantics: R[rd] = R[rs1] >>> R[rs2][4:0]

• Format: R-type

Note that the hardware should ensure that the sign-bit of R[rs1] is extended to the right as it
does the right shift. The hardware must only use the bottom five bits of R[rs2] when performing the
shift.

9

SRL

• Summary: Shift right logical by register value (append zeroes)

• Assembly: srl rd, rs1, rs2

• Semantics: R[rd] = R[rs1] >> R[rs2][4:0]

• Format: R-type

Note that the hardware should append zeros to the left as it does the right shift. The hardware
must only use the bottom five bits of R[rs2] when performing the shift.

SLL

• Summary: Shift left logical by register value (append zeroes)

• Assembly: sll rd, rs1, rs2

• Semantics: R[rd] = R[rs1] << R[rs2][4:0]

• Format: R-type

Note that the hardware should append zeros to the right as it does the left shift. The hardware
must only use the bottom five bits of R[rs2] when performing the shift.

MUL

• Summary: Signed multiplication with 3 GPRs, no overflow exception

• Assembly: mul rd, rs1, rs2

• Semantics: R[rd] = R[rs1] * R[rs2]

• Format: R-type

10

4.3 Register-Immediate Arithmetic Instructions

ADDI

• Summary: Add constant, no overflow exception

• Assembly: addi rd, rs1, imm

• Semantics: R[rd] = R[rs1] + sext(imm)

• Format: I-type, I-immediate

ANDI

• Summary: Bitwise logical AND with constant

• Assembly: andi rd, rs1, imm

• Semantics: R[rd] = R[rs1] & sext(imm)

• Format: I-type, I-immediate

ORI

• Summary: Bitwise logical OR with constant

• Assembly: ori rd, rs1, imm

• Semantics: R[rd] = R[rs1] | sext(imm)

• Format: I-type, I-immediate

11

XORI

• Summary: Bitwise logical XOR with constant

• Assembly: xori rd, rs1, imm

• Semantics: R[rd] = R[rs1] ˆ sext(imm)

• Format: I-type, I-immediate

SLTI

• Summary: Set GPR if source GPR is less than constant, signed comparison

• Assembly: slti rd, rs1, imm

• Semantics: R[rd] = (R[rs1] <s sext(imm))

• Format: I-type, I-immediate

SLTIU

• Summary: Set GPR if source GPR is less than constant, unsigned comparison

• Assembly: sltiu rd, rs1, imm

• Semantics: R[rd] = (R[rs1] <u sext(imm))

• Format: I-type, I-immediate

12

SRAI

• Summary: Shift right arithmetic by constant (sign-extend)

• Assembly: srai rd, rs1, imm

• Semantics: R[rd] = R[rs1] >>> imm

• Format: R-type, I-immediate (variant)

Note that the hardware should ensure that the sign-bit of R[rs1] is extended to the right as it
does the right shift.

SRLI

• Summary: Shift right logical by constant (append zeroes)

• Assembly: srli rd, rs1, imm

• Semantics: R[rd] = R[rs1] >> imm

• Format: R-type, I-immediate (variant)

Note that the hardware should append zeros to the left as it does the right shift.

SLLI

• Summary: Shift left logical constant (append zeroes)

• Assembly: slli rd, rs1, imm

• Semantics: R[rd] = R[rs1] << imm

• Format: R-type, I-immediate (variant)

Note that the hardware should append zeros to the right as it does the left shift.

13

LUI

• Summary: Load constant into upper bits of word

• Assembly: lui rd, imm

• Semantics: R[rd] = imm << 12

• Format: U-type, U-immediate

AUIPC

• Summary: Load PC + constant into upper bits of word

• Assembly: auipc rd, imm

• Semantics: R[rd] = PC + (imm << 12)

• Format: U-type, U-immediate

4.4 Memory Instructions

LW

• Summary: Load word from memory

• Assembly: lw rd, imm(rs1)

• Semantics: R[rd] = M 4B[R[rs1] + sext(imm)]

• Format: I-type, I-immediate

All addresses used with LW instructions must be four-byte aligned. This means the bottom two bits
of every effective address (i.e., after the base address is added to the offset) will always be zero.

14

SW

• Summary: Store word into memory

• Assembly: sw rs2, imm(rs1)

• Semantics: M 4B[R[rs1] + sext(imm)] = R[rs2]

• Format: S-type, S-immediate

All addresses used with SW instructions must be four-byte aligned. This means the bottom two bits
of every effective address (i.e., after the base address is added to the offset) will always be zero. It is
undefined to store to an address location which is then fetched as an instruction.

4.5 Unconditional Jump Instructions

JAL

• Summary: Jump to address and place return address in GPR

• Assembly: jal rd, imm

• Semantics: R[rd] = PC + 4; PC = PC + sext(imm)

• Format: U-type, J-immediate

JR

• Summary: Jump to address

• Assembly: jr rs1

• Semantics: PC = R[rs1]

• Format: I-Type

Note that JR is a ”real” instruction in TinyRV1, but it is a pseudo-instruction for a specific usage
of JALR. We don’t really worry about zero-ing out the the least-significant bit to zero in TinyRV1, but
this must be done for TinyRV2.

15

JALR

• Summary: Jump to address and place return address in GPR

• Assembly: jalr rd, rs1, imm

• Semantics: R[rd] = PC + 4; PC = (R[rs1] + sext(imm)) & 0xfffffffe

• Format: I-Type, I-immediate

Note that the target address is obtained by adding the 12-bit signed I-immediate to the value in
register rs1, then setting the least-significant bit of the result to zero. In other words, the JALR
instruction ignores the lowest bit of the calculated target address.

4.6 Conditional Branch Instructions

BEQ

• Summary: Branch if 2 GPRs are equal

• Assembly: beq rs1, rs2, imm

• Semantics: PC = (R[rs1] == R[rs2]) ? PC + sext(imm) : PC + 4

• Format: S-type, B-immediate

BNE

• Summary: Branch if 2 GPRs are not equal

• Assembly: bne rs1, rs2, imm

• Semantics: PC = (R[rs1] != R[rs2]) ? PC + sext(imm) : PC + 4

• Format: S-type, B-immediate

16

BLT

• Summary: Branch based on signed comparison of two GPRs

• Assembly: blt rs1, rs2, imm

• Semantics: PC = (R[rs1] <s R[rs2]) ? PC + sext(imm) : PC + 4

• Format: S-type, B-immediate

This instruction uses a signed comparison.

BGE

• Summary: Branch based on signed comparison of two GPRs

• Assembly: bge rs1, rs2, imm

• Semantics: PC = (R[rs1] ≥s R[rs2]) ? PC + sext(imm) : PC + 4

• Format: S-type, B-immediate

This instruction uses a signed comparison.

BLTU

• Summary: Branch based on unsigned comparison of two GPRs

• Assembly: bltu rs1, rs2, imm

• Semantics: PC = (R[rs1] <u R[rs2]) ? PC + sext(imm) : PC + 4

• Format: S-type, B-immediate

This instruction uses an unsigned comparison.

17

BGEU

• Summary: Branch based on unsigned comparison of two GPRs

• Assembly: bgeu rs1, rs2, imm

• Semantics: PC = (R[rs1] ≥u R[rs2]) ? PC + sext(imm) : PC + 4

• Format: S-type, B-immediate

This instruction uses an unsigned comparison.

18

5 Tiny RISC-V Privileged ISA

Tiny RISC-V does not support any kind of distinction between user and privileged mode. Using the
terminology in the RISC-V Volume 2 (Privileged) ISA manual, Tiny RISC-V only supports M -mode
(”Machine” privileges, the highest level).

Reset Vector

RISC-V specifies two potential reset vectors: one at a low address, and one at a high address. Tiny
RISC-V uses the low address reset vector at 0x00000200. This is where assembly tests should reside,
as well as user code in TinyRV2.

Control/Status Registers

Tiny RISC-V includes four non-standard CSRs. numcores has the same meaning as the standard CSR
mhartid, so we make numcores a synonym for mhartid. Here is the mapping:

CSR Name Privilege Read/Write? CSR Number Notes
proc2mngr M W 0x7c0 Non-standard
mngr2proc M R 0xfc0 Non-standard

coreid M R 0xf14
Synonym of mhartid
(hardware thread ID)

numcores M R 0xfc1 Non-standard
stats en M RW 0x7c1 Non-standard

These are chosen to conform to the guidelines in Section 2.1 of the RISC-V Volume 2 (Privileged)
ISA manual. Here is a description of each of these five CSRs:

• proc2mngr (0x7c0): Used to communicate data from the processor to the manager. This register
has register-mapped FIFO-enqueue semantics meaning writing the register essentially enqueues
the data on the tail of a FIFO. Writing the register will stall if the FIFO is not ready. Reading
the register is undefined.

• mngr2proc (0xfc0): Used to communicate data from the manager to the processor. This register
has register-mapped FIFO-dequeue semantics, meaning reading the register essentially dequeues
the data from the head of a FIFO. Reading the register will stall if the FIFO has no valid data.
Writing the register is undefined.

• coreid (0xf14): Used to communicate the core ID in a multi-core system. Writing the register
is undefined.

• numcores (0xfc1): Used to store the number of cores present in a multi-core system. Writing
the register is undefined.

• stats en (0x7c1): Used to enable or disable the statistics tracking feature of the processor (i.e.,
counting cycles and instructions)

19

Address Translation

Tiny RISC-V only supports the most basic form of address translation. Every logical address is directly
mapped to the corresponding physical address. As mentioned above, Tiny RISC-V only supports a 1MB
virtual memory address space from 0x00000000 to 0x000fffff, and thus Tiny RISC-V only supports a
1MB physical memory address space. In the RISC-V Volume 2 (Privileged) ISA manual, this is called
a Mbare addressing environment.

20

6 Tiny RISC-V Pseudo-Instructions

It is very important to understand the relationship between the ”real” instructions presented in this
manual, the ”real” instructions in the official RISC-V ISA manual, and pseudo-instructions. There are
four instructions we need to be careful with: NOP, JR, CSRR, CSRW. The following table illustrates
which ISAs contain which of these four instructions, and whether or not the instruction is considered a
”real” instruction or a ”pseudo-instruction”:

TinyRV1 TinyRV2 RISC-V
NOP pseudo pseudo pseudo
JR real pseudo pseudo
CSRR N/A real pseudo
CSRW N/A real pseudo

NOP

NOP is always a pseudo-instruction. It is always equivalent to the following use of the ADDI instruction:

nop ⇐⇒ addi x0, x0, 0

JR

JR is a ”real” instruction in TinyRV1, but it is a pseudo-instruction in TinyRV2 and RISC-V for the
following use of the JALR instruction:

jr rs1 ⇐⇒ jalr x0, rs1, 0

CSRR/CSRW

CSRR and CSRW are real instructions in TinyRV2 but they are pseudo-instructions for the following use
of the CSRRS and CSRRW:

csrr rd, csr ⇐⇒ csrrs rd, csr, x0
csrw csr, rs1 ⇐⇒ csrrw x0, csr, rs1

None of this changes the encodings. In TinyRV1, JR is encoded the same way as the corresponding
use of the JALR instruction in TinyRV2.

21

	Architectural State
	Tiny RISC-V Instruction Overview
	Tiny RISC-V Instruction and Immediate Encoding
	Tiny RISC-V Instruction Formats
	Tiny RISC-V Immediate Formats

	Tiny RISC-V Instruction Details
	Control/Status Register Instructions
	Register-Register Arithmetic Instructions
	Register-Immediate Arithmetic Instructions
	Memory Instructions
	Unconditional Jump Instructions
	Conditional Branch Instructions

	Tiny RISC-V Privileged ISA
	Tiny RISC-V Pseudo-Instructions

