
ECE 5745 Complex Digital ASIC Design
Topic 1: Hardware Description Languages

Christopher Batten

School of Electrical and Computer Engineering
Cornell University

http://www.csl.cornell.edu/courses/ece5745

Evolution of HDLs HDLs Across Stack “High-Level” RTL Guarded-Atomic Actions System-Level Modeling

Course Structure

Part 1
ASIC Design

Overview

Part 2
Digital CMOS

Circuits

Part 3
CAD Algorithms

P P

MM

Prereq
Computer

Architecture

Part 1
ASIC Design

Overview

ECE 5745 T01: Hardware Description Languages 2 / 55

Evolution of HDLs HDLs Across Stack “High-Level” RTL Guarded-Atomic Actions System-Level Modeling

Part 1: ASIC Design Overview

P P

MM

Topic 1
Hardware

Description
Languages

Topic 2
CMOS Devices

Topic 3
CMOS Circuits

Topic 4
Full-Custom

Design
Methodology

Topic 5
Automated

Design
Methodologies

Topic 7
Clocking, Power Distribution,

Packaging, and I/O

Topic 8
Testing and Verification

Topic 6
Closing

the
Gap

Topic 1
Hardware

Description
Languages

ECE 5745 T01: Hardware Description Languages 3 / 55

Evolution of HDLs HDLs Across Stack “High-Level” RTL Guarded-Atomic Actions System-Level Modeling

Agenda

Evolution of Hardware Description Languages

Hardware Description Languages Across Stack

“High-Level” RTL with SystemVerilog

Guarded-Atomic Actions with Bluespec

System-Level Modeling with SystemC

ECE 5745 T01: Hardware Description Languages 4 / 55

• Evolution of HDLs • HDLs Across Stack “High-Level” RTL Guarded-Atomic Actions System-Level Modeling

Originally designers used manual translation
and breadboards for verification

Layout

Register
Transfer

Level

Algorithm
while (a > 0)
 b = b * a
 a = a - 1

Gate
Level

Manual

Manual

Manual

Verification
via

Breadboard

ECE 5745 T01: Hardware Description Languages 5 / 55

• Evolution of HDLs • HDLs Across Stack “High-Level” RTL Guarded-Atomic Actions System-Level Modeling

Hardware description languages enabled
gate-level verification via simulation

Layout

Register
Transfer

Level

Algorithm
while (a > 0)
 b = b * a
 a = a - 1

Gate
Level

Manual

Manual

Manual

Verification
via

Breadboard

Verification
via

Simulation

ECE 5745 T01: Hardware Description Languages 6 / 55

• Evolution of HDLs • HDLs Across Stack “High-Level” RTL Guarded-Atomic Actions System-Level Modeling

Designers began to use HDLs for higher-level
verification and design exploration

Layout

Register
Transfer

Level

Algorithm
while (a > 0)
 b = b * a
 a = a - 1

Gate
Level

Manual

Manual

Manual

Verification
via

Breadboard

Verification
via

Simulation

Verification
via

Simulation

ECE 5745 T01: Hardware Description Languages 7 / 55

• Evolution of HDLs • HDLs Across Stack “High-Level” RTL Guarded-Atomic Actions System-Level Modeling

High-level algorithmic models act as a
precise and executable specification

Layout

Register
Transfer

Level

Algorithm
while (a > 0)
 b = b * a
 a = a - 1

Gate
Level

Manual

Manual

Manual

Verification
via

Breadboard

Verification
via

Simulation

Verification
via

Simulation

Verification
via

Simulation

ECE 5745 T01: Hardware Description Languages 8 / 55

• Evolution of HDLs • HDLs Across Stack “High-Level” RTL Guarded-Atomic Actions System-Level Modeling

Once designs were written in HDLs tools
could be used for automatic translation

Layout

Register
Transfer

Level

Algorithm
while (a > 0)
 b = b * a
 a = a - 1

Gate
Level

Manual

Manual

Manual

Verification
via

Breadboard

Verification
via

Simulation

Verification
via

Simulation

Verification
via

Simulation

Automatic
Place & Route

Automatic
RTL Synthesis

Automatic
HL Synthesis

ECE 5745 T01: Hardware Description Languages 9 / 55

• Evolution of HDLs • HDLs Across Stack “High-Level” RTL Guarded-Atomic Actions System-Level Modeling

Hardware Verification Languages

I A separate or embedded language that is meant purely for verification
as opposed to simulation or synthesis

. Includes high-level programming features to simplify writing test benches
such as object-oriented constructs and random stimulus generation

. Includes special language constructs for writing complex assertions

. Example HVLs: e, OpenVera, PSL, SystemVerilog Verification Subset

I Example SystemVerilog assertions

. Assert that the read enable and write enable signals are never both true:
assert !(read en && write en);

. Assert that priority register in round-robin arbiter is one-hot:
assert property (@(posedge clk) $onehot(priority))

. Assert that acknowledge signal is true cycle after the request signal is true:
assert property (@(posedge clk) req |-> ##[1] ack);

ECE 5745 T01: Hardware Description Languages 10 / 55

Evolution of HDLs • HDLs Across Stack • “High-Level” RTL Guarded-Atomic Actions System-Level Modeling

Agenda

Evolution of Hardware Description Languages

Hardware Description Languages Across Stack

“High-Level” RTL with SystemVerilog

Guarded-Atomic Actions with Bluespec

System-Level Modeling with SystemC

ECE 5745 T01: Hardware Description Languages 11 / 55

Evolution of HDLs • HDLs Across Stack • “High-Level” RTL Guarded-Atomic Actions System-Level Modeling

HDLs Across The Computer Engineering Stack

Layout
Circuit
Level

Register Transfer
Level

Guarded
Atomic Actions

System
Level

Algorithm

while (a>0)
 b = b * a
 a = a - 1

P P

MM

Gate
Level

GDSII MATLAB/C++

Lower-Level
More Control

Less Productive

Higher-Level
Less Control

More Productive

Modeling for Simulation

Modeling for Synthesis

ECE 5745 T01: Hardware Description Languages 12 / 55

Evolution of HDLs • HDLs Across Stack • “High-Level” RTL Guarded-Atomic Actions System-Level Modeling

Circuit-Level Modeling with Spice

Layout
Circuit
Level

Register Transfer
Level

Guarded
Atomic Actions

System
Level

Algorithm

while (a>0)
 b = b * a
 a = a - 1

P P

MM

Gate
Level

* CMOS NAND gate
MP1 4 1 3 3 CMOSP W=28.0U L=2.0U AS=252P AD=252P
MP2 4 2 3 3 CMOSP W=28.0U L=2.0U AS=252P AD=252P
MN1 4 1 5 0 CMOSN W=10.0U L=2.0U AS=90P AD=90P
MN2 5 2 0 0 CMOSN W=10.0U L=2.0U AS=90P AD=90P

* Input stimulus
VINA 2 0 PULSE(0 5 100ns 5ns 5ns 100n 200ns)
VINB 1 0 PULSE(0 5 205ns 5ns 5ns 200n 400ns)
VDD 3 0 DC 5.0

ECE 5745 T01: Hardware Description Languages 13 / 55

Evolution of HDLs • HDLs Across Stack • “High-Level” RTL Guarded-Atomic Actions System-Level Modeling

Gate-Level Modeling with Verilog

Layout
Circuit
Level

Register Transfer
Level

Guarded
Atomic Actions

System
Level

Algorithm

while (a>0)
 b = b * a
 a = a - 1

P P

MM

Gate
Level

ECE 4750 Computer Architecture • Verilog Basics • 25

module mux4(input a, b, c, d, input [1:0] sel, output out);

 wire [1:0] sel_b;
 not not0(sel_b[0], sel[0]);
 not not1(sel_b[1], sel[1]);

 wire n0, n1, n2, n3;
 and and0(n0, c, sel[1]);
 and and1(n1, a, sel_b[1]);
 and and2(n2, d, sel[1]);
 and and3(n3, b, sel_b[1]);

 wire x0, x1;
 nor nor0(x0, n0, n1);
 nor nor1(x1, n2, n3);

 wire y0, y1;
 or or0(y0, x0, sel[0]);
 or or1(y1, x1, sel_b[0]);
 nand nand0(out, y0, y1);

endmodule

Gate-level Verilog uses structural

Verilog to connect primitive gates

sel[0] sel[1] c a d b

out

ECE 5745 T01: Hardware Description Languages 14 / 55

Evolution of HDLs • HDLs Across Stack • “High-Level” RTL Guarded-Atomic Actions System-Level Modeling

“Low-Level” RTL Modeling with Verilog

Layout
Circuit
Level

Register Transfer
Level

Guarded
Atomic Actions

System
Level

Algorithm

while (a>0)
 b = b * a
 a = a - 1

P P

MM

Gate
Level

// Combinational Logic: Operand Muxes

wire [63:0] a_mux_out
= (a_mux_sel == op_load) ? { 32’b0, unsigned_a }
: (a_mux_sel == op_next) ? a_shift_out
: 64’bx;

wire [31:0] b_mux_out
= (b_mux_sel == op_load) ? unsigned_b
: (b_mux_sel == op_next) ? b_shift_out
: 32’bx;

reg [4:0] counter_reg;
reg sign_reg;
reg [63:0] a_reg;
reg [31:0] b_reg;
reg [63:0] result_reg;

// Sequential State

always @ (posedge clk) begin
if (sign_en) begin
sign_reg <= sign_next;

end

if (result_en) begin
result_reg <= result_mux_out;

end

counter_reg <= counter_mux_out;
a_reg <= a_mux_out;
b_reg <= b_mux_out;

end

ECE 5745 T01: Hardware Description Languages 15 / 55

Evolution of HDLs • HDLs Across Stack • “High-Level” RTL Guarded-Atomic Actions System-Level Modeling

Simulation vs. Synthesis Mismatch

Layout
Circuit
Level

Register Transfer
Level

Guarded
Atomic Actions

System
Level

Algorithm

while (a>0)
 b = b * a
 a = a - 1

P P

MM

Gate
Level

// Mux with assign statement

wire [3:0] out
= (sel == 0) ? a : b;

What happens if the sel signal
contains an X?

// Mux with always block

reg [3:0] out;

always @(*)
begin

if (sel == 0)
out = a;

else
out = b;

end

ECE 5745 T01: Hardware Description Languages 16 / 55

Evolution of HDLs • HDLs Across Stack • “High-Level” RTL Guarded-Atomic Actions System-Level Modeling

Higher-Level HDLs

Layout
Circuit
Level

Register Transfer
Level

Guarded
Atomic Actions

System
Level

Algorithm

while (a>0)
 b = b * a
 a = a - 1

P P

MM

Gate
Level

How can we raise the level of abstraction to
increase hardware design productivity?

I “High-Level” Register-Transfer-Level Modeling with SystemVerilog
I Guarded Atomic Actions with Bluespec
I System-Level Modeling with SystemC

ECE 5745 T01: Hardware Description Languages 17 / 55

Evolution of HDLs HDLs Across Stack • “High-Level” RTL • Guarded-Atomic Actions System-Level Modeling

Agenda

Evolution of Hardware Description Languages

Hardware Description Languages Across Stack

“High-Level” RTL with SystemVerilog

Guarded-Atomic Actions with Bluespec

System-Level Modeling with SystemC

ECE 5745 T01: Hardware Description Languages 18 / 55

Evolution of HDLs HDLs Across Stack • “High-Level” RTL • Guarded-Atomic Actions System-Level Modeling

SystemVerilog: Struct and Union Types
8 24

JUMP addr
31 24 23 0

// Declare JumpInstr structure

typedef struct packed {
logic [7:0] opcode;
logic [23:0] addr

} JumpInstr;

// Instantiate JumpInstr structure

JumpInstr instr;
instr.opcode = c_opcode_jump;
instr.addr = addr;

JumpInstr instr
= { opcode: c_opcode_jump,

addr: addr };

8 24 24 24 24
ADD rd rt rs 0

31 24 23 19 18 14 13 9 8 0

// Declare AddInstr structure

typedef struct packed {
logic [7:0] opcode;
logic [4:0] rd;
logic [4:0] rt;
logic [4:0] rs;
logic [8:0] null;

} AddInstr;

// Declare Instr union

typedef union packed {
JumpInstr jump;
AddInstr add;

} Instr;

// Instantiate Instr union

Instr instr;
instr.jump.opcode = c_opcode_jump;
instr.jump.addr = addr;

ECE 5745 T01: Hardware Description Languages 19 / 55

Evolution of HDLs HDLs Across Stack • “High-Level” RTL • Guarded-Atomic Actions System-Level Modeling

SystemVerilog: Tagged Union Types
8 24

JUMP addr
31 24 23 0

// Declare Instr w/ common opcode

typedef struct packed {
logic [23:0] addr

} JumpInstrFields;

typedef struct packed {
logic [4:0] rd;
logic [4:0] rt;
logic [4:0] rs;
logic [8:0] null;

} AddInstrFields;

typedef union packed {
JumpInstrFields jump;
AddInstrFields add;

} InstrFields;

typedef struct packed {
logic [7:0] opcode;
InstrFields fields;

} Instr;

8 24 24 24 24
ADD rd rt rs 0

31 24 23 19 18 14 13 9 8 0

// Declared Instr tagged union

typedef union tagged packed {
JumpInstrFields jump;
AddInstrFields add;

} Instr;

// Instantiate Instr tagged union

Instr instr
= tagged jump { addr: addr };

// Pattern matching

case (instr) matches
tagged add: cs={ sel_a, y };
tagged jump: cs={ sel_b, n };

endcase

ECE 5745 T01: Hardware Description Languages 20 / 55

Evolution of HDLs HDLs Across Stack • “High-Level” RTL • Guarded-Atomic Actions System-Level Modeling

SystemVerilog: Typed Ports and Type Parameters
// Structs, unions, tagged unions
// can be used as ports

module InstrDecodeTable
(

input Instr instr,
output ControlSigs cs

)

// Use structure selectors
// to access instruction
// and control signal fields

endmodule

// Type parameter allows more
// expressive polymorphism

module Queue
#(

parameter type ItemType
)(

input clk, reset

input enq_val,
output enq_rdy,
input ItemType enq_item,

output deq_val,
input deq_rdy
output ItemType deq_bits,

)

// Use \$bits for size of item

endmodule

// Instantiate polymorphic queue
Queue#(Instr) queue(...)

ECE 5745 T01: Hardware Description Languages 21 / 55

Evolution of HDLs HDLs Across Stack • “High-Level” RTL • Guarded-Atomic Actions System-Level Modeling

SystemVerilog: Port Bundle Interfaces
// Declare valrdy interface

interface ValRdyIfc;
logic val;
logic rdy;
logic [31:0] msg;

modport send_ifc(output val,
input rdy,
output msg);

modport recv_ifc(input val,
output rdy,
input msg);

endinterface

// Instantiate and use interface

ValRdyIfc channel;
Producer producer(channel);
Consumer consumer(channel);

// Using an interface

module Producer
(

input clk, reset,
ValRdyIfc.send_ifc send_ifc

)

// ...

always @(posedge clk)
begin

send_ifc.val = ...
send_ifc.msg = ...

end

endmodule

ECE 5745 T01: Hardware Description Languages 22 / 55

Evolution of HDLs HDLs Across Stack • “High-Level” RTL • Guarded-Atomic Actions System-Level Modeling

SystemVerilog: Method Interfaces
// Declare valrdy method interface

interface ValRdyIfc;
logic val;
logic rdy;
logic [31:0] msg;

// ...

function send
(input logic [31:0] msg);

// ...
endfunction

function is_send_done
(output logic done);

// ...
endfunction

endinterface

// Using an method interface

module Producer
(

input clk, reset,
ValRdyIfc.send_ifc send_ifc

)

// ...

logic done;

always @(posedge clk)
begin

send_ifc.send(msg);
send_ifc.is_send_done(done);
if (done)

...
end

endmodule

ECE 5745 T01: Hardware Description Languages 23 / 55

Evolution of HDLs HDLs Across Stack • “High-Level” RTL • Guarded-Atomic Actions System-Level Modeling

SystemVerilog: Interfaces

Bus Fabric

Master

Slave Slave

Ifc Ifc

Ifc

ECE 5745 T01: Hardware Description Languages 24 / 55

Evolution of HDLs HDLs Across Stack “High-Level” RTL • Guarded-Atomic Actions • System-Level Modeling

Agenda

Evolution of Hardware Description Languages

Hardware Description Languages Across Stack

“High-Level” RTL with SystemVerilog

Guarded-Atomic Actions with Bluespec

System-Level Modeling with SystemC

ECE 5745 T01: Hardware Description Languages 25 / 55

Evolution of HDLs HDLs Across Stack “High-Level” RTL • Guarded-Atomic Actions • System-Level Modeling

Designers Usually Use Weak Interfaces

data_in

push_req_n

pop_req_n

clk

rstn

data_out

full

empty

Example: Commercially available FIFO IP
block

These constraints are spread over many pages of the
documentation...

Adapted from [Arvind’11]

ECE 5745 T01: Hardware Description Languages 26 / 55

Evolution of HDLs HDLs Across Stack “High-Level” RTL • Guarded-Atomic Actions • System-Level Modeling

Expressing Hardware with
Guarded Atomic Actions in Bluespec

I Guarded rules
. Hardware expressed as collection of rules that execute atomically

and in a well-defined serialized sequence
. Allows thinking of pieces of the design in isolation
. Compiler manages scheduling of rules to increase performance

I Guarded method interfaces
. Formalizes composition
. Compiler manages connectivity (muxing and control logic)

I Powerful type and static elaboration facilities
. Significant amount of compile-time static checking
. Permits parameterization of designs at all levels

ECE 5745 T01: Hardware Description Languages 27 / 55

Evolution of HDLs HDLs Across Stack “High-Level” RTL • Guarded-Atomic Actions • System-Level Modeling

Guarded Atomic Action Execution Model

I Semantics
. Actions execute in a serialized order
. Actions execute in isolation

I Repeatedly
. Select a rule to execute (highly non-deterministic)
. Compute the new state values
. Update the state

I Implementation concerns
. But doesn’t executing one rule at a time mean our

implementation will be very slow?
. Can we schedule multiple rules concurrently without violating

one-rule-at-a-time semantics?

ECE 5745 T01: Hardware Description Languages 28 / 55

Evolution of HDLs HDLs Across Stack “High-Level” RTL • Guarded-Atomic Actions • System-Level Modeling

State and Rules Organized into Modules

interface

module

I All state is explicit (no inferred latches or flip-flops)
I Behavior is expressed in terms of guarded rules within each module

that atomically update state internal to that module
I Rules can manipulate state in other modules only via their guarded

method interfaces
Adapted from [Arvind’11]

ECE 5745 T01: Hardware Description Languages 29 / 55

Evolution of HDLs HDLs Across Stack “High-Level” RTL • Guarded-Atomic Actions • System-Level Modeling

GCD Using Euclid’s Algorithm

def gcd(x, y):
while True:
if x > y:
x,y = y,x

elif y != 0:
y = y - x

else:
return x

x y op
1. 25 15 swap
2. 15 25 sub
3. 15 10 swap
4. 10 15 sub
5. 10 5 swap
6. 5 10 sub
7. 5 5 sub
8. 5 0 return x

ECE 5745 T01: Hardware Description Languages 30 / 55

Evolution of HDLs HDLs Across Stack “High-Level” RTL • Guarded-Atomic Actions • System-Level Modeling

GCD Implementation in Bluespec

module mkGCD (I_GCD);
Reg#(Int#(32)) x <- mkRegU;
Reg#(Int#(32)) y <- mkReg(0);

rule swap ((x > y) && (y != 0));
x <= y; y <= x;

endrule

rule sub ((x <= y) && (y != 0));
y <= y – x;

endrule

method Action start(Int#(32) a, Int#(32) b) if (y==0);
x <= a; y <=

endmethod

method Int#(32) result() if (y==0);
return x;

endmethod
endmodule

Explicit
State

Internal
Behavior

External
Interface

b;

x y

swap sub

Adapted from [Arvind’11]

ECE 5745 T01: Hardware Description Languages 31 / 55

Evolution of HDLs HDLs Across Stack “High-Level” RTL • Guarded-Atomic Actions • System-Level Modeling

GCD Alternative Implementation

module mkGCD (I_GCD);
Reg#(Int#(32)) x <- mkRegU;
Reg#(Int#(32)) y <- mkReg(0);

rule swap
x <= y;

endrule

rule sub ((x <= y) && (y != 0));

(y != 0));

y <= y – x;
endrule

method Action start(Int#(32) a, Int#(32) b) if (y==0);
x <= a; y <=

endmethod

method Int#(32) result() if (y==0);
return x;

endmethod
endmodule

C
o
m
b
in
e
d

R
u
le

b;

y <= ;x - y
sub((x > y) &&

x y op
1. 25 15 swapsub
2. 15 10 swapsub
3. 10 5 swapsub
4. 5 5 sub
5. 5 0 return x

Adapted from [Arvind’11]

ECE 5745 T01: Hardware Description Languages 32 / 55

Evolution of HDLs HDLs Across Stack “High-Level” RTL • Guarded-Atomic Actions • System-Level Modeling

Generated GCD Hardware: Interface

rdy
enab

Int#(32)

Int#(32)
rdy

st
ar

t
re

su
lt

G
C

D

m
od

ul
e

Int#(32)

y == 0

y == 0

implicit conditions

I Module can easily be made polymorphic as in SystemVerilog
I Many different implementations can provide the same interface

Adapted from [Arvind’11]

ECE 5745 T01: Hardware Description Languages 33 / 55

Evolution of HDLs HDLs Across Stack “High-Level” RTL • Guarded-Atomic Actions • System-Level Modeling

Generated GCD Hardware: Rules

next state values

predicates

x_en y_en

x_en =
y_en =

x y

> !(=0)

swap? subtract?

sub

x
y

en
rdy

x
rdy

st
ar

t
re

su
lt

swap?
swap? OR subtract?

rule swap ((x>y)&&(y!=0));
 x <= y; y <= x; endrule
rule subtract ((x<=y)&&(y!=0));
 y <= y – x; endrule

Adapted from [Arvind’11]

ECE 5745 T01: Hardware Description Languages 34 / 55

Evolution of HDLs HDLs Across Stack “High-Level” RTL • Guarded-Atomic Actions • System-Level Modeling

Generated GCD Hardware: Rules and Methods

x_en y_en

x_en = swap?
y_en = swap? OR subtract?

x y

> !(=0)

swap? subtract?

sub

x
y

en
rdy

x
rdy

st
ar

t
re

su
lt

rdy =

start_en start_en

OR start_en

(y==0)

OR start_en

Adapted from [Arvind’11]

ECE 5745 T01: Hardware Description Languages 35 / 55

Evolution of HDLs HDLs Across Stack “High-Level” RTL • Guarded-Atomic Actions • System-Level Modeling

A Systematic Approch to GAA Synthesis

A rule may be decomposed into two parts
π(s) and δ(s) such that

 snext = if π(s) then δ(s) else s

π(s) is the condition (predicate) of the rule,
a.k.a. the “CAN_FIRE” signal of the rule. π is a
conjunction of explicit and implicit conditions

δ(s) is the “state transformation” function,
i.e., computes the next-state values from the
current state values

Adapted from [Arvind’11]

ECE 5745 T01: Hardware Description Languages 36 / 55

Evolution of HDLs HDLs Across Stack “High-Level” RTL • Guarded-Atomic Actions • System-Level Modeling

Compiling a Rule

f

x

current
state

next
state

values
δ

π

enable

f

x

rule r (f.first() > 0) ;
x <= x + 1 ; f.deq ();

endrule

π = enabling condition
δ = action signals & values

Adapted from [Arvind’11]

ECE 5745 T01: Hardware Description Languages 37 / 55

Evolution of HDLs HDLs Across Stack “High-Level” RTL • Guarded-Atomic Actions • System-Level Modeling

Combining State Updates (strawman)

next state
value

latch
enable

R

π1

πn

δ1,R

δn,R

 OR

π’s from the rules
that update R

δ’s from the rules
that update R

What if more than one rule is enabled?

 OR

Adapted from [Arvind’11]

ECE 5745 T01: Hardware Description Languages 38 / 55

Evolution of HDLs HDLs Across Stack “High-Level” RTL • Guarded-Atomic Actions • System-Level Modeling

Combining State Updates

next state
value

latch
enable

R

Scheduler:
Priority

Encoder

φ1

φn

π1

πn

δ1,R

δn,R

 OR
δ’s from the rules

that update R

Scheduler ensures that at most one φi is true

π’s from all
the rules

one-rule-at-a-
time
scheduler is
conservative

 OR

Adapted from [Arvind’11]

ECE 5745 T01: Hardware Description Languages 39 / 55

Evolution of HDLs HDLs Across Stack “High-Level” RTL • Guarded-Atomic Actions • System-Level Modeling

Scheduling and Control Logic

Modules
(Current state)

Rules

δ1	

π1	

φ1

φn

π1

πn

Muxing

δ1

δn δn

πn

Modules
(Next state)

cond

action

“CAN_FIRE” “WILL_FIRE”

Compiler synthesizes a scheduler such that at any given time φ’s
for only non-conflicting rules are true

Scheduler

Adapted from [Arvind’11]

ECE 5745 T01: Hardware Description Languages 40 / 55

Evolution of HDLs HDLs Across Stack “High-Level” RTL Guarded-Atomic Actions • System-Level Modeling •

Agenda

Evolution of Hardware Description Languages

Hardware Description Languages Across Stack

“High-Level” RTL with SystemVerilog

Guarded-Atomic Actions with Bluespec

System-Level Modeling with SystemC

ECE 5745 T01: Hardware Description Languages 41 / 55

Evolution of HDLs HDLs Across Stack “High-Level” RTL Guarded-Atomic Actions • System-Level Modeling •

System-Level Modeling

Transaction Level Modeling: An Overview

Lukai Cai and Daniel Gajski
Center for Embedded Computer Systems

University of California, Irvine
Irvine, CA 92697, USA

{lcai,gajski}@cecs.uci.edu

ABSTRACT
Recently, the transaction-level modeling has been widely re-
ferred to in system-level design community. However, the
transaction-level models(TLMs) are not well defined and the
usage of TLMs in the existing design domains, namely mod-
eling, validation, refinement, exploration, and synthesis, is
not well coordinated. This paper introduces a TLM taxon-
omy and compares the benefits of TLMs’ use.

Categories and Subject Descriptors
C.0 [Computer Systems Organization]: General

General Terms
Design

Keywords
Transaction level model, modeling, validation, refinement,
exploration, synthesis

1. INTRODUCTION
In order to handle the ever increasing complexity of system-

on-chips (SoCs) and time-to-market pressures, the design
abstraction has been raised to the system level in order to
increase design productivity. This higher level of abstrac-
tion generated large interest in transaction-level modeling,
synthesis, and verification [10][12].

In a transaction-level model (TLM), the details of com-
munication among computation components are separated
from the details of computation components. Communica-
tion is modeled by channels, while transaction requests take
place by calling interface functions of these channel models.
Unnecessary details of communication and computation are
hidden in a TLM and may be added later. TLMs speed up
simulation and allow exploring and validating design alter-
natives at the higher level of abstraction.

However, the definition of TLMs is not well understood.
Without clear definition of TLMs, not only the predefined

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’03, October 1–3, 2003, Newport Beach, California, USA.
Copyright 2003 ACM 1-58113-742-7/03/0010 ...$5.00.

Computation

Communication

A B

C

D F

Un-
timed

Approximate-
timed

Cycle-
timed

Un-
timed

Approximate-
timed

Cycle-
timed

A. Specification model
B. Component-assembly model
C. Bus-arbitration model
D. Bus-functional model
E. Cycle-accurate computation
model
F. Implementation model

E

Figure 1: System modeling graph

TLMs cannot be easily reused, but also the usage of TLMs
in the existing design domains, namely modeling, validation,
refinement, exploration, and synthesis, cannot be systemat-
ically developed. Consequently, the inherent advantages of
TLMs don’t effectively benefit designers. In order to elim-
inate some ambiguity of TLMs, this paper attempts to ex-
plicitly define several transaction-level models, each of which
is adopted for different design purpose. It also explores the
usage of defined TLMs under a general design flow and an-
alyzes how the TLMs are used in the design domains.

This paper is organized as follows: Section 2 reviews the
related work; Section 3 defines four TLMs; Section 4 in-
troduces the usage of TLMs in different design domains;
Finally, the conclusion is given in section 5.

2. RELATEDWORK
The concept of TLM first appears in system level lan-

guage and modeling domain. [10] defines the concept of
a channel, which enables separating communication from
computation. It proposes four well-defined models at differ-
ent abstraction levels in a top-down design flow. Some of
these models can be classified as TLMs. However, the capa-
bilities of TLMs are not explicitly emphasized. [12] broadly
describes the TLM features based on the channel concept
and presents some design examples. However, the TLMs
are not well defined and the usage of TLMs in the existing
design domains is not addressed. [10] [12] also demonstrate
that both SpecC [3] and SystemC [2] support transaction
level modeling using the channel concept.

The TLMs can be used in top-down approaches such as

19

Separate computation/storage
from communication

Adapted from [Cai’03]

ECE 5745 T01: Hardware Description Languages 42 / 55

Evolution of HDLs HDLs Across Stack “High-Level” RTL Guarded-Atomic Actions • System-Level Modeling •

Specification Model

proposed by SCE [6] that starts design from the system be-
havior representing the design’s functionality, generates a
system architecture from the behavior, and gradually reaches
the implementation model by adding implementation de-
tails. In comparison to the top-down approaches, meet-
in-the-middle approaches [13] map the system behavior to
the predefined system architecture, rather than generating
the architecture from the behavior. An example of meet-
in-the-middle approach is VCC [5] for architecture estima-
tion/exploration and N2C [1] for interface synthesis. Un-
like above two approaches, bottom-up approaches assem-
ble the existing computation components by inserting wrap-
pers among them. Bottom-up approaches, such as proposed
in [9], focus on component reuse and wrapper generation.
All of above three design practices fully or partly cover the
design from the system behavior to the detailed system im-
plementation, which exhibits great potential of employing
TLMs.

Some other research groups have applied TLMs in the
design. [14] adopts TLMs to ease the development of em-
bedded software. [15] defines a TLM with certain proto-
col details in a platform-based design, and uses it to inte-
grate components at the transaction level. [11] implements
co-simulation across-abstraction level using channels, which
implies the usage of TLM. Each of above research addresses
only one limited aspect of TLMs.

3. TRANSACTION LEVEL MODELS
In order to simplify the design process, designers gener-

ally use a number of intermediate models. The intermedi-
ate models slice the entire design into several smaller design
stages, each of which has a specific design objective. Since
the models can be simulated and estimated, the result of
each of these design stages can be independently validated.

In order to relate different models, we introduce the sys-
tem modeling graph (shown in Figure 1) [8]. X-axis in the
graph represents computation and y-axis represents com-
munication. On each axis, we have three degrees of time
accuracy: un-timed, approximate-timed, and cycle-timed.
Un-timed computation/communication represents the pure
functionality of the design without any implementation de-
tails. Approximate-timed computation/communication con-
tains system-level implementation details, such as the se-
lected system architecture, the mapping relations between
processes of the system specification and the processing el-
ements of the system architecture. The execution time for
approximate-timed computation/communication is usually
estimated at the system level without cycle-accurate RTL
(register transfer level) /ISS (instruction set simulation) level
evaluation [5]. Cycle-timed computation/communication con-
tains implementation details at both system level and the
RTL/ISS level, such that cycle-accurate estimation can be
obtained.

Inspired by [10] [12], we define six abstraction models in
the system modeling graph, which are indicated by circles.
Among them, component-assembly model, bus-arbitration
model, bus-functional model, and cycle-accurate computa-
tion model are TLMs, which are indicated by shaded circles.

Specification model. It describes the system function-
ality and is free of any implementation details. This model
is similar to the specification model in [10] and untimed
functional model in [12]. It can model the data transfer
between processes through variable accessing without using

v2 = v1 + b*b; v3= v1- b*b;

v1

v1 = a*a;

v2

v4 = v2 + v3;
c = sequ(v4);

B1

B2

v3

B3

B4

B2B3

Figure 2: The example of specification model

v3

v3= v1- b*b;
B3

v4 = v2 + v3;
c = sequ(v4);

B4

PE3

v2 = v1 + b*b;
B2

PE2

v1 = a*a;
B1

PE1

cv2

cv12

cv11

Figure 3: The example of component-assembly
model

channel concept, which eases to convert C/C++ language
to SystemC/SpecC language. Specification model is an un-
timed model. Figure 2 displays an example of specification
model. Processes B1, B2B3, and B4 execute sequentially.
B2B3 is a parallel composition of B2 and B3. Variables v1,
v2 and v3 are used to transfer data among processes.

Component-assembly model. The entities at the top
level of the model represent concurrently executing process-
ing elements (PEs) and global memories, which commu-
nicate through channels. A PE can be a custom hard-
ware, a general-purpose processor, a DSP, or an IP. The
channels are message passing channels, which only repre-
sent data transfer or process synchronization between PEs
without any bus/protocol implementation. The communi-
cation part of the model (channel) is un-timed, while com-
putation part of the model (PE) is timed by approximately
estimating the execution on specific PE. The estimated time
of computation is computed by system-level estimator such
as [5]. The estimated time is annotated into the code by
inserting wait statements. Component-assembly model is
the same as architecture model defined in [10] and belongs

20

I Describes system
functionality without any
implementation details

I Computation modeled
as abstract concurrent
processes

I Communication
modeled with standard
software variables

Adapted from [Cai’03]

ECE 5745 T01: Hardware Description Languages 43 / 55

Evolution of HDLs HDLs Across Stack “High-Level” RTL Guarded-Atomic Actions • System-Level Modeling •

TLM: Component-Assembly Model

proposed by SCE [6] that starts design from the system be-
havior representing the design’s functionality, generates a
system architecture from the behavior, and gradually reaches
the implementation model by adding implementation de-
tails. In comparison to the top-down approaches, meet-
in-the-middle approaches [13] map the system behavior to
the predefined system architecture, rather than generating
the architecture from the behavior. An example of meet-
in-the-middle approach is VCC [5] for architecture estima-
tion/exploration and N2C [1] for interface synthesis. Un-
like above two approaches, bottom-up approaches assem-
ble the existing computation components by inserting wrap-
pers among them. Bottom-up approaches, such as proposed
in [9], focus on component reuse and wrapper generation.
All of above three design practices fully or partly cover the
design from the system behavior to the detailed system im-
plementation, which exhibits great potential of employing
TLMs.

Some other research groups have applied TLMs in the
design. [14] adopts TLMs to ease the development of em-
bedded software. [15] defines a TLM with certain proto-
col details in a platform-based design, and uses it to inte-
grate components at the transaction level. [11] implements
co-simulation across-abstraction level using channels, which
implies the usage of TLM. Each of above research addresses
only one limited aspect of TLMs.

3. TRANSACTION LEVEL MODELS
In order to simplify the design process, designers gener-

ally use a number of intermediate models. The intermedi-
ate models slice the entire design into several smaller design
stages, each of which has a specific design objective. Since
the models can be simulated and estimated, the result of
each of these design stages can be independently validated.

In order to relate different models, we introduce the sys-
tem modeling graph (shown in Figure 1) [8]. X-axis in the
graph represents computation and y-axis represents com-
munication. On each axis, we have three degrees of time
accuracy: un-timed, approximate-timed, and cycle-timed.
Un-timed computation/communication represents the pure
functionality of the design without any implementation de-
tails. Approximate-timed computation/communication con-
tains system-level implementation details, such as the se-
lected system architecture, the mapping relations between
processes of the system specification and the processing el-
ements of the system architecture. The execution time for
approximate-timed computation/communication is usually
estimated at the system level without cycle-accurate RTL
(register transfer level) /ISS (instruction set simulation) level
evaluation [5]. Cycle-timed computation/communication con-
tains implementation details at both system level and the
RTL/ISS level, such that cycle-accurate estimation can be
obtained.

Inspired by [10] [12], we define six abstraction models in
the system modeling graph, which are indicated by circles.
Among them, component-assembly model, bus-arbitration
model, bus-functional model, and cycle-accurate computa-
tion model are TLMs, which are indicated by shaded circles.

Specification model. It describes the system function-
ality and is free of any implementation details. This model
is similar to the specification model in [10] and untimed
functional model in [12]. It can model the data transfer
between processes through variable accessing without using

v2 = v1 + b*b; v3= v1- b*b;

v1

v1 = a*a;

v2

v4 = v2 + v3;
c = sequ(v4);

B1

B2

v3

B3

B4

B2B3

Figure 2: The example of specification model

v3

v3= v1- b*b;
B3

v4 = v2 + v3;
c = sequ(v4);

B4

PE3

v2 = v1 + b*b;
B2

PE2

v1 = a*a;
B1

PE1

cv2

cv12

cv11

Figure 3: The example of component-assembly
model

channel concept, which eases to convert C/C++ language
to SystemC/SpecC language. Specification model is an un-
timed model. Figure 2 displays an example of specification
model. Processes B1, B2B3, and B4 execute sequentially.
B2B3 is a parallel composition of B2 and B3. Variables v1,
v2 and v3 are used to transfer data among processes.

Component-assembly model. The entities at the top
level of the model represent concurrently executing process-
ing elements (PEs) and global memories, which commu-
nicate through channels. A PE can be a custom hard-
ware, a general-purpose processor, a DSP, or an IP. The
channels are message passing channels, which only repre-
sent data transfer or process synchronization between PEs
without any bus/protocol implementation. The communi-
cation part of the model (channel) is un-timed, while com-
putation part of the model (PE) is timed by approximately
estimating the execution on specific PE. The estimated time
of computation is computed by system-level estimator such
as [5]. The estimated time is annotated into the code by
inserting wait statements. Component-assembly model is
the same as architecture model defined in [10] and belongs

20

I Approximately estimate
execution time of PEs
using first-order models

I Explicitly capture
process-to-PE mapping

I Use dedicated
point-to-point channels
to interconnect
computation and
storage PEs

I No modeling of bus or
protocol details

Adapted from [Cai’03]

ECE 5745 T01: Hardware Description Languages 44 / 55

Evolution of HDLs HDLs Across Stack “High-Level” RTL Guarded-Atomic Actions • System-Level Modeling •

TLM: Bus-Arbitration Model

v2 = v1 + b*b;
B2

PE2

v1 = a*a;
B1

PE1

v3

v3= v1- b*b;
B3

v4 = v2 + v3;
c = sequ(v4);

B4

PE3

cv12

cv11

cv2

PE4
(Arbiter)

3

1 2

1. Master interface
2. Slave interface
3. Arbiter interface

Figure 4: The example of bus-arbitration model

to timed functional model defined in [12]. In compari-
son to specification model, component-assembly model ex-
plicitly specifies the allocated PEs in the system architec-
ture and process-to-PE mapping decision. The example of
component-assembly model is displayed in Figure 3. PE1,
PE2 and PE3 are three allocated PEs. cv11, cv12, cv2 are
the message-passing channels.

Bus-arbitration model. In comparison to component-
assembly model, channels between PEs in bus-arbitration
model represent buses, which are called abstract bus chan-
nels. The channels still implement data transfer through
message passing, while bus protocols can be simplified as
blocking and nonblocking I/O. No cycle-accurate and pin-
accurate protocol details are specified. The abstract bus
channels have estimated approximate time, which is speci-
fied in the channels by one wait statement per transaction.
Because several channels may be grouped to one abstract
bus channel, two parameters are added to the interface func-
tions of channels: logical address and bus priority. Logical
address distinguishes interface function calls of different PEs
or processes; bus priority determines the bus access sequence
when bus conflict happens. Furthermore, a bus arbiter is in-
serted into the system architecture as a new PE to arbitrate
the bus conflict. Master PEs, slave PEs, and the arbiter call
the functions of different interfaces of the same abstract bus
channels.

Figure 4 illustrates an example of bus-arbitration model
refined from component-assembly model in Figure 3. The
three channels in component-assembly model are encapsu-
lated into an abstract bus channel representing a system bus.
In order to access the new channel, the bus masters (PE1
and PE2), the bus slave (PE3), and the inserted arbiter
(PE4) use different channel interfaces.

Bus-functional model. It contains time/cycle accurate
communication and approximate-timed computation. Two
types of bus-functional model are specified: time-accurate
model and cycle-accurate model. Time-accurate model spec-
ifies the time constraint of communication, which is deter-
mined by the time diagram of component’s protocol. For
example, in Figure 5(a), the time is limited in the time range
between 25 and 75. Cycle-accurate model can specify the
time in terms of the bus master’s clock cycles, as displayed
in Figure 5(b). The task of refining a time-accurate model
to a cycle-accurate model is called protocol refinement.

(5, 15) (5, 25)
(10, 20) (5, 15)

ready

ack

address[15:0]

data[31:0]

(a)Time Diagram

(b)Cycle accurate time diagram

ready

ack

address[15:0]

data[31:0]

CLK

Lowerbound = 5 + 10 + 5 + 5 = 25
Upperbound = 15 + 20 +25 + 15 =75

Figure 5: Time/cycle accurate diagram

v2 = v1 + b*b;
B2

PE2

v1 = a*a;
B1

PE1

v3

v3= v1- b*b;
B3

v4 = v2 + v3;
c = sequ(v4);

B4

PE3

PE4
(Arbiter)

3

1 2

1. Master interface
2. Slave interface
3. Arbiter interface

ready
ack

address[15:0]
data[31:0]

IP
ro
to
co
lS
la
v

e

ready
ack

address[15:0]

data[31:0]

Figure 6: The example of bus-functional model

In bus-functional model, the message-passing channels are
replaced by protocol channels. A protocol channel is time/cycle-
accurate and pin-accurate. Inside a protocol channel, wires
of the bus are represented by instantiating corresponding
variables/signals. Data is transferred following the time/cycle
accurate protocol sequence. At its interface, a protocol
channel provides functions for all abstraction bus transac-
tion. A protocol channel is the same as a protocol channel
of [10]. We call an abstract bus channel containing a pro-
tocol channel a detailed bus channel. It should be noted
that in the bus-functional model, it is not necessary to re-
fine all the abstract bus channels into detailed bus chan-
nels. Some abstract bus channels can be refined while others
are untouched. The refinement process from bus-arbitration
model to the bus-functional model is similar to the proto-
col insertion introduced in [10]. Figure 6 illustrates our
bus-functional model.

Cycle-accurate computation model. It contains cycle-
accurate computation and approximate-timed communica-
tion. This model can be generated from the bus-arbitration

21

I Approximately estimate
execution time of PEs
using first-order models

I Explicitly capture
channel-to-bus mapping

I Still communicate
through abstract
channels, but also
estimate bus
performance with
first-order arbitration
models

Adapted from [Cai’03]

ECE 5745 T01: Hardware Description Languages 45 / 55

Evolution of HDLs HDLs Across Stack “High-Level” RTL Guarded-Atomic Actions • System-Level Modeling •

TLM: Bus-Functional Model

v2 = v1 + b*b;
B2

PE2

v1 = a*a;
B1

PE1

v3

v3= v1- b*b;
B3

v4 = v2 + v3;
c = sequ(v4);

B4

PE3

cv12

cv11

cv2

PE4
(Arbiter)

3

1 2

1. Master interface
2. Slave interface
3. Arbiter interface

Figure 4: The example of bus-arbitration model

to timed functional model defined in [12]. In compari-
son to specification model, component-assembly model ex-
plicitly specifies the allocated PEs in the system architec-
ture and process-to-PE mapping decision. The example of
component-assembly model is displayed in Figure 3. PE1,
PE2 and PE3 are three allocated PEs. cv11, cv12, cv2 are
the message-passing channels.

Bus-arbitration model. In comparison to component-
assembly model, channels between PEs in bus-arbitration
model represent buses, which are called abstract bus chan-
nels. The channels still implement data transfer through
message passing, while bus protocols can be simplified as
blocking and nonblocking I/O. No cycle-accurate and pin-
accurate protocol details are specified. The abstract bus
channels have estimated approximate time, which is speci-
fied in the channels by one wait statement per transaction.
Because several channels may be grouped to one abstract
bus channel, two parameters are added to the interface func-
tions of channels: logical address and bus priority. Logical
address distinguishes interface function calls of different PEs
or processes; bus priority determines the bus access sequence
when bus conflict happens. Furthermore, a bus arbiter is in-
serted into the system architecture as a new PE to arbitrate
the bus conflict. Master PEs, slave PEs, and the arbiter call
the functions of different interfaces of the same abstract bus
channels.

Figure 4 illustrates an example of bus-arbitration model
refined from component-assembly model in Figure 3. The
three channels in component-assembly model are encapsu-
lated into an abstract bus channel representing a system bus.
In order to access the new channel, the bus masters (PE1
and PE2), the bus slave (PE3), and the inserted arbiter
(PE4) use different channel interfaces.

Bus-functional model. It contains time/cycle accurate
communication and approximate-timed computation. Two
types of bus-functional model are specified: time-accurate
model and cycle-accurate model. Time-accurate model spec-
ifies the time constraint of communication, which is deter-
mined by the time diagram of component’s protocol. For
example, in Figure 5(a), the time is limited in the time range
between 25 and 75. Cycle-accurate model can specify the
time in terms of the bus master’s clock cycles, as displayed
in Figure 5(b). The task of refining a time-accurate model
to a cycle-accurate model is called protocol refinement.

(5, 15) (5, 25)
(10, 20) (5, 15)

ready

ack

address[15:0]

data[31:0]

(a)Time Diagram

(b)Cycle accurate time diagram

ready

ack

address[15:0]

data[31:0]

CLK

Lowerbound = 5 + 10 + 5 + 5 = 25
Upperbound = 15 + 20 +25 + 15 =75

Figure 5: Time/cycle accurate diagram

v2 = v1 + b*b;
B2

PE2

v1 = a*a;
B1

PE1

v3

v3= v1- b*b;
B3

v4 = v2 + v3;
c = sequ(v4);

B4

PE3

PE4
(Arbiter)

3

1 2

1. Master interface
2. Slave interface
3. Arbiter interface

ready
ack

address[15:0]
data[31:0]

IP
ro
to
co
lS
la
v

e
ready
ack

address[15:0]

data[31:0]

Figure 6: The example of bus-functional model

In bus-functional model, the message-passing channels are
replaced by protocol channels. A protocol channel is time/cycle-
accurate and pin-accurate. Inside a protocol channel, wires
of the bus are represented by instantiating corresponding
variables/signals. Data is transferred following the time/cycle
accurate protocol sequence. At its interface, a protocol
channel provides functions for all abstraction bus transac-
tion. A protocol channel is the same as a protocol channel
of [10]. We call an abstract bus channel containing a pro-
tocol channel a detailed bus channel. It should be noted
that in the bus-functional model, it is not necessary to re-
fine all the abstract bus channels into detailed bus chan-
nels. Some abstract bus channels can be refined while others
are untouched. The refinement process from bus-arbitration
model to the bus-functional model is similar to the proto-
col insertion introduced in [10]. Figure 6 illustrates our
bus-functional model.

Cycle-accurate computation model. It contains cycle-
accurate computation and approximate-timed communica-
tion. This model can be generated from the bus-arbitration

21

I Approximately estimate
execution time of PEs
using first-order models

I Cycle-accurate RTL
model of bus protocol

Adapted from [Cai’03]

ECE 5745 T01: Hardware Description Languages 46 / 55

Evolution of HDLs HDLs Across Stack “High-Level” RTL Guarded-Atomic Actions • System-Level Modeling •

TLM: Cycle-Accurate Computation Model

Models Communication Computation Communication PE interface
time time scheme

Specification model no no variable/channel (no PE)
Component-assembly no approximate message- abstract
model passing channel
Bus-transaction model approximate approximate abstract bus channel abstract
Bus-functional time/cycle approximate detailed abstract
model accurate bus channel
Cycle-accurate approximate cycle-accurate abstract bus channel pin-accurate
computation model
Implementation model cycle-accurate cycle-accurate wire pin-accurate

Table 1: Characteristics of different abstraction models

v2 = v1 + b*b;
B2

PE2

v1 = a*a;
B1

PE1 PE3

cv12

cv11

cv2

PE4
(Arbiter)

3

1 2

1. Master interface
2. Slave interface
3. Arbiter interface
4. Wrapper

S0

S1

S2

S3

S4

4

Figure 7: The example of cycle-accurate computa-
tion model

model. In this model, computation components (PEs) are
pin accurate and execute cycle-accurately. The custom hard-
ware components are modeled at register-transfer level, and
general-purpose processors and DSPs are modeled in terms
of cycle-accurate instruction set architecture. To enable
communication between cycle-accurate PEs and abstract
level interfaces of abstract bus channels, wrappers which
convert data transfer from higher level of abstraction to
lower level abstraction are inserted to bridge the PEs and
the bus interfaces. Similar to the bus-functional model, it
is not necessary to refine all the PEs to the cycle-accurate
level. Some PEs can be refined while others are untouched.
Figure 7 illustrates a cycle-accurate computation model, in
which only PE3 is refined to a time-accurate and pin-accurate
model.

Implementation model. It has both cycle-accurate
communication and cycle-accurate computation. The com-
ponents are defined in terms of their register-transfer or
instruction-set architecture. The implementation model can
be obtained from the bus-functional model or the cycle-
accurate computation model. The implementation model is
the same as the implementation model in [10] and register-
transfer level model in [12]. Figure 8 displays an example
of the implementation model. PE1 and PE2 are micro-
processors while PE3 and PE4 are custom-hardwares.

Table 1 summaries the characteristics of different abstrac-
tion models. Although models indicated by × in Figure 1
can also be specified, they will not be discussed in this paper
because they are not commonly used.

PE2PE1

PE3PE4

S0

S1

S2

S3

S4

MOV r1, 10
MUL r1, r1, r1

....

...
MLA r1, r2, r2, r1

....

S0

S1

S2

S3

MCNTR
MADDR
MDATA

interrupt

interrupt

interrupt

req req

Figure 8: The example of implementation model

4. SYSTEM DESIGNWITH TLMS

4.1 Design Flow
The gray solid arrow in Figure 1 represents a well-accepted

design flow. It goes through models A, C, and F, which rep-
resents system functionality, abstract system architecture,
and cycle-accurate system implementation respectively. Among
them, bus-arbitration model divides the system flow into two
stages: system design stage and component design stage.
System design stage selects/generates system architecture
and maps the system behavior to that architecture. Compo-
nent design stage refines/systhezises computation and com-
munication components to the cycle accurate level. In gen-
eral, different design flows include different models. For ex-
ample, [10] goes through models A, B, D and F, [9] goes
through models A, C, E and F, while [12] goes through
models A, B, C, D and F.

4.2 Design Domain Definition
In Figure 1, we use arrows to represent a set of tasks that

generate one abstraction model from the previous one. Fig-
ure 9 shows a general design flow with five design domains
for generating model B from model A.

1. Modeling domain. It deals with languages and styles
of writing models. In other words, it deals with seman-

22

I Cycle-accurate RTL
model of (some) PEs

I Adapters interface
lower-level RTL
interface to higher-level
bus-arbitration model

I Still communicate
through abstract
channels, but also
estimate bus
performance with
first-order arbitration
models

Adapted from [Cai’03]

ECE 5745 T01: Hardware Description Languages 47 / 55

Evolution of HDLs HDLs Across Stack “High-Level” RTL Guarded-Atomic Actions • System-Level Modeling •

Register-Transfer-Level Model

Models Communication Computation Communication PE interface
time time scheme

Specification model no no variable/channel (no PE)
Component-assembly no approximate message- abstract
model passing channel
Bus-transaction model approximate approximate abstract bus channel abstract
Bus-functional time/cycle approximate detailed abstract
model accurate bus channel
Cycle-accurate approximate cycle-accurate abstract bus channel pin-accurate
computation model
Implementation model cycle-accurate cycle-accurate wire pin-accurate

Table 1: Characteristics of different abstraction models

v2 = v1 + b*b;
B2

PE2

v1 = a*a;
B1

PE1 PE3

cv12

cv11

cv2

PE4
(Arbiter)

3

1 2

1. Master interface
2. Slave interface
3. Arbiter interface
4. Wrapper

S0

S1

S2

S3

S4

4

Figure 7: The example of cycle-accurate computa-
tion model

model. In this model, computation components (PEs) are
pin accurate and execute cycle-accurately. The custom hard-
ware components are modeled at register-transfer level, and
general-purpose processors and DSPs are modeled in terms
of cycle-accurate instruction set architecture. To enable
communication between cycle-accurate PEs and abstract
level interfaces of abstract bus channels, wrappers which
convert data transfer from higher level of abstraction to
lower level abstraction are inserted to bridge the PEs and
the bus interfaces. Similar to the bus-functional model, it
is not necessary to refine all the PEs to the cycle-accurate
level. Some PEs can be refined while others are untouched.
Figure 7 illustrates a cycle-accurate computation model, in
which only PE3 is refined to a time-accurate and pin-accurate
model.

Implementation model. It has both cycle-accurate
communication and cycle-accurate computation. The com-
ponents are defined in terms of their register-transfer or
instruction-set architecture. The implementation model can
be obtained from the bus-functional model or the cycle-
accurate computation model. The implementation model is
the same as the implementation model in [10] and register-
transfer level model in [12]. Figure 8 displays an example
of the implementation model. PE1 and PE2 are micro-
processors while PE3 and PE4 are custom-hardwares.

Table 1 summaries the characteristics of different abstrac-
tion models. Although models indicated by × in Figure 1
can also be specified, they will not be discussed in this paper
because they are not commonly used.

PE2PE1

PE3PE4

S0

S1

S2

S3

S4

MOV r1, 10
MUL r1, r1, r1

....

...
MLA r1, r2, r2, r1

....

S0

S1

S2

S3

MCNTR
MADDR
MDATA

interrupt

interrupt

interrupt

req req

Figure 8: The example of implementation model

4. SYSTEM DESIGNWITH TLMS

4.1 Design Flow
The gray solid arrow in Figure 1 represents a well-accepted

design flow. It goes through models A, C, and F, which rep-
resents system functionality, abstract system architecture,
and cycle-accurate system implementation respectively. Among
them, bus-arbitration model divides the system flow into two
stages: system design stage and component design stage.
System design stage selects/generates system architecture
and maps the system behavior to that architecture. Compo-
nent design stage refines/systhezises computation and com-
munication components to the cycle accurate level. In gen-
eral, different design flows include different models. For ex-
ample, [10] goes through models A, B, D and F, [9] goes
through models A, C, E and F, while [12] goes through
models A, B, C, D and F.

4.2 Design Domain Definition
In Figure 1, we use arrows to represent a set of tasks that

generate one abstraction model from the previous one. Fig-
ure 9 shows a general design flow with five design domains
for generating model B from model A.

1. Modeling domain. It deals with languages and styles
of writing models. In other words, it deals with seman-

22

I Cycle-accurate RTL
models of both
computation/storage
and communication

Adapted from [Cai’03]

ECE 5745 T01: Hardware Description Languages 48 / 55

Evolution of HDLs HDLs Across Stack “High-Level” RTL Guarded-Atomic Actions • System-Level Modeling •

SystemC Framework

Methodology-Specific Libraries
Master/Slave Lib, Verification Lib, Static Dataflow

Core Language
Modules

Ports
Processes
Interfaces
Channels

Data Types
4-Valued Logic Types

4-Valued Logic Vectors
Bits and Bit Vectors
Fixed-Point Types

C++ User-Defined Types

Event-Driven Simulation Kernel

C++ Language Standard

Primitive Channels
Signal, Mutex, Semaphore, FIFO

ECE 5745 T01: Hardware Description Languages 49 / 55

Evolution of HDLs HDLs Across Stack “High-Level” RTL Guarded-Atomic Actions • System-Level Modeling •

SystemC Modules, Processes, Channels

I Separate computation from communication
. Computation: implemented with Processes in Modules

. Communication: implemented in Channels

I Interface method calls

. Collection of a fixed set of
communication Methods is
called an Interface

. Channels implement one
or more Interfaces

. Modules can be connected
via their Ports to those
Channels which implement
the corresponding Interface

Adapted from [Moondanos’04]

ECE 5745 T01: Hardware Description Languages 50 / 55

Evolution of HDLs HDLs Across Stack “High-Level” RTL Guarded-Atomic Actions • System-Level Modeling •

SystemC Producer-Consumer Example

struct Producer : public sc_module
{

// Ports
sc_out<bool> clk;
sc_out<int> value;

SC_HAS_PROCESS(Producer);
Producer(sc_module_name name) : sc_module(name)
{

// Declares compute as a thread
SC_THREAD(compute);

}

void compute()
{

for (int i = 0; i < 10; ++i) {
clk.write(false); // toggle clk
wait(5, SC_NS); // wait for 5 nanoseconds
clk.write(true); // toggle clk
value.write(i); // write value to channel
wait(5, SC_NS); // wait for 5 nanoseconds

}
}

};

ECE 5745 T01: Hardware Description Languages 51 / 55

Evolution of HDLs HDLs Across Stack “High-Level” RTL Guarded-Atomic Actions • System-Level Modeling •

SystemC Producer-Consumer Example

struct Consumer : public sc_module
{

// Ports
sc_in<bool> clk;
sc_in<int> value;

SC_HAS_PROCESS(Consumer);
Consumer(sc_module_name name) : sc_module(name)
{

// Declares receive() as a process triggered
// on clk value changes
SC_METHOD(receive);
sensitive << clk;

}

void receive()
{

// If clk is changing from false to true
if (clk.posedge())

std::cout << ’Received: ’ << value.read() << std::endl;
}

};

ECE 5745 T01: Hardware Description Languages 52 / 55

Evolution of HDLs HDLs Across Stack “High-Level” RTL Guarded-Atomic Actions • System-Level Modeling •

SystemC System

Adapted from [Moondanos’04]

ECE 5745 T01: Hardware Description Languages 53 / 55

Evolution of HDLs HDLs Across Stack “High-Level” RTL Guarded-Atomic Actions System-Level Modeling

Take-Away Points

Layout
Circuit
Level

Register Transfer
Level

Guarded
Atomic Actions

System
Level

Algorithm

while (a>0)
 b = b * a
 a = a - 1

P P

MM

Gate
Level

I Hardware description languages involve a four-way tension
. Low-level languages offer more control but less productivity
. High-level languages offer less control but more productivity
. Simulation features for modeling function and test harnesses
. Synthesis features for modeling actual hardware

I Hardware description languages are (slowly) moving towards
including higher abstractions to improve productivity such as
. Types, Interfaces (SystemVerilog)
. Guarded Atomic Rules, Guarded Method Interfaces (Bluespec)
. Transaction-Level Modeling (SystemC)

ECE 5745 T01: Hardware Description Languages 54 / 55

Evolution of HDLs HDLs Across Stack “High-Level” RTL Guarded-Atomic Actions System-Level Modeling

Acknowledgments

I [Arvind’11] Arvind, “Introduction to Bluespec,” MIT 6.375 Complex
Digital Systems, Lecture, 2011.

I [Cai’03] L. Cai and D. Gajski, “Transaction Level Modeling: An
Overview,” Int’l Conf. on Hardware/Software Codesign and System
Synthesis, Oct. 2003.

I [Moondanos’04] J. Moondanos, “SystemC Tutorial,” UC Berkeley EE
249 Embedded System Design, Guest Lecture, 2004.

ECE 5745 T01: Hardware Description Languages 55 / 55

