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Part 1: ASIC Design Overview
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CMOS Logic, State, Interconnect
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CMOS Logic, State, Interconnect
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CMOS Inverter Simple RC Model

Vdd

Vin Vout

Close switch when Vin = 0

Close switch when Vin = Vdd
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CMOS Inverter Simple RC Model

6.375 Spring 2006 • L04 CMOS Transistors, Gates, and Wires • 11

A simple RC model for the 
inverter can provide significant insight

Reff = Reff,N = Reff,P
Cg = Cg,N + Cg,P
Cd = Cd,N + Cd,P

Vin Vout Vin

Cg Cd
Reff

Reff

Vout

ECE 5745 T03: CMOS Circuits 6 / 28



• Combinational Logic • Sequential State

CMOS Inverter Layout
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The most basic CMOS gate 
is an inverter

Vin Vout

WN/LN

WP/LP

A Y

VDD

GND

PMOS

NMOS
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CMOS Inverter

6.375 Spring 2006 • L04 CMOS Transistors, Gates, and Wires • 9

The most basic CMOS gate 
is an inverter

Vin Vout

WN/LN

WP/LP

Let’s make the following assumptions
1. All transistors are minimum length
2. All gates should have equal rise/fall 

times. Since PMOS are twice as slow 
as NMOS they must be twice as wide 
to have the same effective resistance

3. Normalize all transistor widths to 
minimum width NMOS

2Į

1Į
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Series Transistors

Adapted from [Weste’11]
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Parallel Transistors

Adapted from [Weste’11]
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Series/Parallel Transistor Networks are Natural Duals

6.375 Spring 2006 • L04 CMOS Transistors, Gates, and Wires • 20

Series and parallel MOSFET networks 
provide natural duals of each other

A BA
A

B

A
A

B
A B

Conducts if A=1 OR B=1Conducts if A=1 AND B=1Conducts if A=1

Conducts if A=0 AND B=0Conducts if A=0 OR B=0Conducts if A=0
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CMOS Static Logic Style
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More complicated gates use more 
transistors in pullup/pulldown networks

For every set of input logic values, either pullup or pulldown

network makes connection to VDD or GND

– If both connected, power rails would be shorted together

– If neither connected, output would float (tristate logic)

VDD

VOUT

Pullup network, connects output 
to VDD, contains only PMOS

Pulldown network, connects output 
to GND, contains only NMOS

Input N
Input 1

Input 0
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NAND/NOR Static CMOS Logic Gates
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NAND and NOR gates illustrate the dual 
nature of the pullup/pulldown networks

A

B
(A.B)

B
A

(A.B)

A

B
(A+B)

A
B (A+B)

NAND Gate NOR Gate
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Approach for Designing More Complex Gates

I Goal is to create a logic function f (x1, x2, ...)

. We can only implement inverting logic with one CMOS stage

I Implement pulldown network
. Write PD = f (x1, x2, ...)

. Use parallel NMOS for OR of inputs

. Use series NMOS for AND of inputs

I Implement pullup network
. Write PU = f (x1, x2, ...) = g(x1, x2, ...)

. Use parallel PMOS for OR of inverted inputs

. Use series PMOS for AND of inverted inputs
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Complex Logic Gate Example
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Designers can use a methodical 
approach to build more complex gates

A

B

C
(A+B).C

C)BA(f �� 

C)BA(PD �� 

C)BA(

C)BA(

C)BA(PU
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Single- vs. Multi-Stage Static CMOS Logic

Adapted from [Weste’11]
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Multiple Stages of Static CMOS Logic

Each design has different delay,
area, and energy trade-offs

Adapted from [Weste’11]
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CMOS Pass-Transistor Logic Style

Adapted from [Weste’11]
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CMOS Transmission Gate Multiplexer

Adapted from [Weste’11]
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CMOS Tri-State Buffers

Vdd

A Y

En

En
Gnd

Adapted from [Weste’11]
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Various Multiplexer Implementations

Each design has different delay,
area, and energy trade-offs

Simple first-order analysis can help
suggest some of these trade-offs

Adapted from [Weste’11]
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Larger Tri-State Multiplexers

Adapted from [Weste’11]
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CMOS Logic, State, Interconnect
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Level-High Latch

Adapted from [Weste’11]
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Positive-Edge Triggered Flip-Flop

Adapted from [Weste’11]
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Positive-Edge Triggered Flip-Flop

Adapted from [Weste’11]
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Take-Away Points

I We have reviewed basic CMOS circuit implementations
. Combinational Logic: static CMOS, pass-transistor, tri-state buffers
. Sequential State: latches, flip-flops

I In the next two sections, we will explore various methodologies which
enable mapping designs written in a hardware-description language
down into these circuits

I In the next part of the course, we will explore the details of how to
quantitatively evaluate the cycle time, area, and energy of these
circuits
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