ECE 5745 Complex Digital ASIC Design Topic 3: CMOS Circuits

Christopher Batten

School of Electrical and Computer Engineering Cornell University

http://www.csl.cornell.edu/courses/ece5745

Sequential State

Part 1: ASIC Design Overview

Sequential State

CMOS Logic, State, Interconnect

Sequential State

CMOS Logic, State, Interconnect

Sequential State

CMOS Inverter Simple RC Model

ECE 5745

Sequential State

CMOS Inverter Simple RC Model

CMOS Inverter

Let's make the following assumptions

- 1. All transistors are minimum length
- 2. All gates should have equal rise/fall times. Since PMOS are twice as slow as NMOS they must be twice as wide to have the same effective resistance
- 3. Normalize all transistor widths to minimum width NMOS

 Combinational Logic • Sequential State **Parallel Transistors** а а а а а g2 g1 0 ٥0 ٩0 0 OFF ON ON ON а а а а g2 g1 0 0 n ON ON OFF ON Adapted from [Weste'11]

T03: CMOS Circuits

Series/Parallel Transistor Networks are Natural Duals

Sequential State

CMOS Static Logic Style

For every set of input logic values, either pullup or pulldown network makes connection to VDD or GND

- If both connected, power rails would be shorted together
- If neither connected, output would float (tristate logic)

Sequential State

NAND/NOR Static CMOS Logic Gates

NAND Gate

 $\begin{array}{c} A \\ B \end{array} \qquad \qquad \bigcirc \frown \quad (\overline{A.B}) \end{array}$

NOR Gate

Approach for Designing More Complex Gates

- Goal is to create a logic function $f(x_1, x_2, ...)$
 - We can only implement inverting logic with one CMOS stage
- Implement pulldown network
 - $\triangleright \text{ Write } PD = \overline{f(x_1, x_2, \ldots)}$
 - Use parallel NMOS for OR of inputs
 - Use series NMOS for AND of inputs
- Implement pullup network
 - ▷ Write $PU = f(x_1, x_2, ...) = g(\overline{x_1}, \overline{x_2}, ...)$
 - Use parallel PMOS for OR of inverted inputs
 - Use series PMOS for AND of inverted inputs

Sequential State

Complex Logic Gate Example

15 / 28

Sequential State

Single- vs. Multi-Stage Static CMOS Logic

Sequential State

Multiple Stages of Static CMOS Logic

Adapted from [Weste'11]

Sequential State

CMOS Pass-Transistor Logic Style

ECE 5745

T03: CMOS Circuits

18 / 28

Sequential State

CMOS Transmission Gate Multiplexer

Adapted from [Weste'11]

Sequential State

CMOS Tri-State Buffers

Adapted from [Weste'11]

T03: CMOS Circuits

Sequential State

Various Multiplexer Implementations

Each design has different delay, area, and energy trade-offs

Simple first-order analysis can help suggest some of these trade-offs

Adapted from [Weste'11]

Sequential State

Larger Tri-State Multiplexers

Sequential State

CMOS Logic, State, Interconnect

Sequential State

Level-High Latch

Adapted from [Weste'11]

- Q

Sequential State

Positive-Edge Triggered Flip-Flop

Adapted from [Weste'11]

Sequential State

Positive-Edge Triggered Flip-Flop

Adapted from [Weste'11]

Take-Away Points

- We have reviewed basic CMOS circuit implementations
 - Combinational Logic: static CMOS, pass-transistor, tri-state buffers
 - Sequential State: latches, flip-flops
- In the next two sections, we will explore various methodologies which enable mapping designs written in a hardware-description language down into these circuits
- In the next part of the course, we will explore the details of how to quantitatively evaluate the cycle time, area, and energy of these circuits

Acknowledgments

[Weste'11] N. Weste and D. Harris, "CMOS VLSI Design: A Circuits and Systems Perspective," 4th ed, Addison Wesley, 2011.