
NAND3_X1

Databook Build Date: Thursday Feb 17 15:07 2011 Copyright © 2004-2010 Nangate Inc.

Conditions for characterization library NangateOpenCellLibrary, corner NangateOpenCellLibrary_typical_typical: Vdd= 1.10V, Tj= 25.0 deg. C .

Additional corners: NangateOpenCellLibrary [NangateOpenCellLibrary_slow_slow], NangateOpenCellLibrary [NangateOpenCellLibrary_fast_fast],

NangateOpenCellLibrary [NangateOpenCellLibrary_worst_low_worst_low], NangateOpenCellLibrary [NangateOpenCellLibrary_low_temp_low_temp].

Output transition is defined from 30% to 70% (rising) and from 70% to 30% (falling) output voltage.

Propagation delay is measured from 50% (input rise) or 50% (input fall) to 50% (output rise) or 50% (output fall).

Strength 1

Cell Area 1.064 um2

Equation ZN = "!((A1 & A2) & A3)"

Type Combinational

Input A1, A2, A3

Output ZN

PG Pins VDD (primary_power), VSS (primary_ground)

State Table

A1 A2 A3 ZN

L - - H

H H H L

- L - H

- - L H

Propagation Delay [ns]

Input Transition [ns] 0.0012 0.1985

Load Capacitance [fF] 0.3656 58.3649 0.3656 58.3649

A1 to ZN
fall 0.01 0.18 0.02 0.26

rise 0.01 0.15 0.04 0.25

A2 to ZN
fall 0.01 0.18 0.03 0.25

rise 0.01 0.15 0.05 0.25

A3 to ZN
fall 0.01 0.19 0.02 0.23

rise 0.01 0.15 0.06 0.26

Output Transition [ns]

Input Transition [ns] 0.0012 0.1985

Load Capacitance [fF] 0.3656 58.3649 0.3656 58.3649

A1 to ZN
fall 0.01 0.15 0.04 0.16

rise 0.01 0.14 0.04 0.15

A2 to ZN
fall 0.01 0.15 0.03 0.16

rise 0.01 0.14 0.03 0.15

A3 to ZN
fall 0.01 0.15 0.03 0.16

rise 0.01 0.14 0.03 0.15

Capacitance [fF]

A1 1.5903

A2 1.6212

A3 1.6504

Leakage [nW]

18.10

Dynamic Power Consumption [uW/GHz]

Input Transition [ns] 0.0012 0.1985

Load Capacitance [fF] 0.3656 58.3649 0.3656 58.3649

A1 to ZN
fall 0.52 0.56 3.28 1.11

rise 2.47 2.46 5.19 3.45

A2 to ZN
fall 0.53 0.56 2.42 0.82

rise 3.20 3.01 5.85 4.37

A3 to ZN
fall 0.53 0.56 2.25 0.80

rise 3.77 3.83 6.61 4.88

Page 104 of 969

NAND3_X2

Databook Build Date: Thursday Feb 17 15:07 2011 Copyright © 2004-2010 Nangate Inc.

Conditions for characterization library NangateOpenCellLibrary, corner NangateOpenCellLibrary_typical_typical: Vdd= 1.10V, Tj= 25.0 deg. C .

Additional corners: NangateOpenCellLibrary [NangateOpenCellLibrary_slow_slow], NangateOpenCellLibrary [NangateOpenCellLibrary_fast_fast],

NangateOpenCellLibrary [NangateOpenCellLibrary_worst_low_worst_low], NangateOpenCellLibrary [NangateOpenCellLibrary_low_temp_low_temp].

Output transition is defined from 30% to 70% (rising) and from 70% to 30% (falling) output voltage.

Propagation delay is measured from 50% (input rise) or 50% (input fall) to 50% (output rise) or 50% (output fall).

Strength 2

Cell Area 1.862 um2

Equation ZN = "!((A1 & A2) & A3)"

Type Combinational

Input A1, A2, A3

Output ZN

PG Pins VDD (primary_power), VSS (primary_ground)

State Table

A1 A2 A3 ZN

L - - H

H H H L

- L - H

- - L H

Propagation Delay [ns]

Input Transition [ns] 0.0012 0.1985

Load Capacitance [fF] 0.3656 116.272 0.3656 116.272

A1 to ZN
fall 0.01 0.18 0.02 0.26

rise 0.01 0.15 0.04 0.25

A2 to ZN
fall 0.01 0.18 0.03 0.25

rise 0.01 0.15 0.05 0.25

A3 to ZN
fall 0.01 0.19 0.02 0.23

rise 0.01 0.15 0.06 0.26

Output Transition [ns]

Input Transition [ns] 0.0012 0.1985

Load Capacitance [fF] 0.3656 116.272 0.3656 116.272

A1 to ZN
fall 0.01 0.15 0.04 0.16

rise 0.01 0.14 0.04 0.15

A2 to ZN
fall 0.01 0.15 0.03 0.16

rise 0.01 0.14 0.03 0.15

A3 to ZN
fall 0.01 0.15 0.03 0.16

rise 0.01 0.14 0.03 0.15

Capacitance [fF]

A1 2.9778

A2 3.2864

A3 3.5589

Leakage [nW]

36.21

Dynamic Power Consumption [uW/GHz]

Input Transition [ns] 0.0012 0.1985

Load Capacitance [fF] 0.3656 116.272 0.3656 116.272

A1 to ZN
fall 1.24 1.31 6.74 2.40

rise 5.11 5.07 10.57 7.05

A2 to ZN
fall 1.24 1.31 5.03 1.83

rise 6.57 6.85 11.85 8.89

A3 to ZN
fall 1.24 1.31 4.68 1.78

rise 7.72 8.20 13.41 10.20

Page 105 of 969

- 1 -

ece5745-pla-notes.txt

==
Follow up on PAL/PROM/PLA Activity
==

The boolean equation we want to map to the PROM and PAL is:

 f = x0’x1’x2 + x0x2 + x0’x1

For the PROM, we can expand this boolean equation into the canonical
sum-of-minterms form. With three literals, a minterm is a product term
(i.e., the AND of literals) of all three literals (i.e., the complemented
or uncomplemented version of every literal is in the product term). So
the sum-of-minterms for this boolean equation is:

 f = x0’x1’x2 + x0x1x2 + x0x1’x2 + x0’x1x2 + x0’x1x2’

Each minterm corresponds to one row in the PROM. We simply connect the
appropriate rows to a single OR gate in the OR plane. It is kind of like
we are directly implementing the truth-table with the PROM. There is one
row in the PROM for every row in the truth-table where the output is one.

For the PAL, we can leave the boolean equation in its original
sum-of-products form. The original form is "sum-of-products" but not
"sum-of-minterms" because each product term is not a minterm (i.e., each
product term in the original boolean equation does not include all three
inputs). Each product term in the original boolean equation corresponds
to one row in the PAL. We simply connect the desired complement or
uncomplemented version of the inputs we need to a row in the AND plane.
Since there are three product terms in the original boolean equation, we
need three rows. In general, there is no reason we couldn’t map the
sum-of-minterms form to a PAL as well; but this would require five rows
and the PAL in this example only supports up to four inputs into a single
OR gate so it wouldn’t work for this specific PAL. By using a reduced
version of the boolean logic equation we need less rows.

Note that the original boolean equation is actually _not_ a "minimal
covering". A minimal covering is a sum-of-products boolean equation where
each product term is a "prime implicant". A prime implicant is a product
term that cannot be covered by a more general implicant (i.e., the
product term cannot be reduced to include fewer literals). We can further
minimize the original boolean logic equation. To see how we can use
Karnaugh maps (which everyone learned about in ECE 2300). From the
canonical sum-of-minterms form, we know there will be five ones in the
K-map:

 x0x1

 00 01 11 00
 +------------
 x2 0| 0 1 0 0
 1| 1 1 1 1

So we can cover the ones with two prime implicants (represented with a
and b below):

 x0x1

 00 01 11 00
 +------------
 x2 0| 0 a 0 0
 1| b b b b

- 2 -

ece5745-pla-notes.txt

So the following is a minimal covering:

 f = x2 + x0’x1x2’

So given this minimal covering we can now implement the original boolean
logic equation with just _two_ instead of _three_ rows in the PAL.

I also wanted to clarify how we might actually implement a PROM, PAL,
PAL. The slides use an abstract representation with AND/OR gates, but a
real implementation will _not_ use static CMOS AND/OR gates with so many
inputs. PROM, PAL, and PLAs are usually implemented using a dynamic-logic
style which is one reason these structures can be faster than logic
synthesized out of static CMOS gates. Figure 12.78 in Weste & Harris (now
included in the slides) illustrates how this works. We use dynamic NOR
gates for both the AND and OR plane. We also need to add inverters to the
input and outputs to make the two stages of NOR gates logically
equivalent to just the AND/OR gates:

 --I>o--|NOR
 |NOR---|NOR
 --I>o--|NOR |NOR
 |NOR--I>o--
 --I>o--|NOR |NOR
 |NOR---|NOR
 --I>o--|NOR

So if we push the inverter bubbles into the first stage of NOR gates,
they turn into AND gates and the final inverter means the second stage is
really an OR gate.

So if you look at Figure 12.78 you can see how this works. Note that
Figure 12.78 is not really for a "programmable" PLA but is for a PLA that
is configured at design time, but it is the same idea as what we might
use in a programmable PLA. We precharge the horizontal buses in the AND
plane and then if any of the inputs are one they turn on the pull-down
NMOS and cause the horizontal bus to discharge. This bus is directly
connected to the gate of a pull-down NMOS in the OR plane. The vertical
buses in the OR plane are also precharged and if the output from the AND
plane is one it will turn on the pull-down NMOS in the OR plane and cause
the vertical bus to discharge. Note that normally with dynamic logic we
never directly connect the output of a dynamic node to the input of the
next dynamic gate -- if we are not careful the horizontal buses could
turn on the pull-down NMOS in the OR plane before the pull-down NMOS in
the AND plane has had time to fully discharge the horizontal bus. This is
why in domino logic we always have an inverter on the output of every
dynamic gate. To avoid the delay of this inverter, Weste & Harris
describe how we can use carefully crafted control signals to ensure that
we don’t precharge the vertical buses in the OR plane until the AND plane
has fully evaluated (i.e., and horizontal buses that are supposed to be
zero have fully discharged).

