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1. RC Modeling

1. RC Modeling

* (4 capacitors do not actually switch, so ignore

Lump Cypp + Capy, since both tied to constant nodes

Lump Cgsp + Cgsn since both tied to constant nodes
Assume PMOS mobility is 2x worse than NMOS mobility




1. RC Modeling

* Let C be the gate capacitance of minimum sized NMOS
¢ Let R be the effective resistance of a minimum sized NMOS
e Let k be width of a transistor relative to minimum sized NMOS
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Draw and label the parasitic capacitances.
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2. Delay 2.1. RC Delay of Inverter

2. Delay

We will initially use RC modeling to estimate delay

We will then use RC modeling to derive logical effort (LE)

LE is a fast way to estimate delay for simple static CMOS circuits
Often need to use a mix of RC modeling and LE

2.1. RC Delay of Inverter
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* Let t,4 be the propagation delay, time until Vour = Vj4/2




2. Delay 2.2. RC Delay of 2-Input NAND Gate

Vout = Vg e /7 * Sot,; =In(2)-RC
Via _ Vg et/ * LetR' =In(2)-R,s0ty; = R'Cy
1 V2 ¢ For inverter on previous page,

ol /T tpa = 2R'C
Vaa 2 pd

1 ¢ * We usually just assume effective
In (2) -7 resistance is scaled by In(2)
I 1\ * So propagation delay of inverter

Tz T on previous page:
t=11In(2)

tpi = 2RC

2.2. RC Delay of 2-Input NAND Gate
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* Requires complicated 2nd order model
* We can use a simple approximation
T=7m+T=RC+(R+R)C,
= RC + (2R)(3C)
= RC + 6RC =7RC (3.5% slower than inverter)

Best when one T much larger than the other T
Even if 7y = 1, error is < 15%




2. Delay 2.2. RC Delay of 2-Input NAND Gate

Generalized Elmore Delay

all nodes

tpd: Z Ri]'Ci

. y
’ /L Assume all

x o o resistances are R and
—\ —C

‘ T/\ @ J; Iﬂ, all capacitances are C
s A

TS R

FCo TC

Delay of path from x to y is impacted by branch to z

Delay of path from x to z is impacted by branch to y

For path x to y, lump C; + C3 and use shared resistance Ry + R4
For path x to z, lump C; and use shared resistance Ry + R4

This extra term estimates impact of delay due to “branch”

Tpd,xy = RoCo + (Rop+ Ry + Rp)Cq + (Ro + R1)(Ca + C3)
= RC +3RC +4RC = 8RC

Tpdxz = RoCo + (Ro + R1 + R3)Co + (Ro + Ry + R3 + Re)C3 + (Ro + R1)Cy
= RC +3RC 4+ 4RC +2RC = 10RC




2. Delay 2.2. RC Delay of 2-Input NAND Gate

Use Elmore Delay to Estimate Rise/Fall Times for 2-Input NAND Gate

tpd1—0
A=1
B=0—1
tpd,1—>0
A=0—>1
B =
tpd,0—>1
A=1—0
B=1—=0
tpd,0—1
A=1
B=1—0
tpd0—1
A=1—-0
B =1




2. Delay

2.3. Equal Rise/Fall Times

2.3. Equal Rise/Fall Times
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* For equal rise/fall times, the effective resistance of pullup must

equal effective resistance of pulldown

¢ If we assume PMOS mobility 2 x worse than NMOS, then PMOS
must be 2x size of NMOS in an inverter for equal rise/fall times
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2. Delay 2.4. Equal Drive Strength

2.4. Equal Drive Strength

* Size transistors so worst case effective resistance is equal in both the
pullup and pulldown networks.

tpa1—0 tpd,0—1

worst best worst best

inverter

2-input NAND  w/o internal cap

2-input NAND  w/ internal cap

¢ Is this a fair comparison? No, we are not normalizing anything
across these gates. We need to either normalize:
— Input gate gap (i.e., load on previous gate)
— Drive strength (i.e., effective resistance)
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2. Delay 2.5. Larger Gates

¢ All three gates with equal rise/fall times and equal drive strengths
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2.5. Larger Gates
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¢ This is the parasitic delay, independent of size (k)
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2. Delay

2.6. Larger Loads

2.6. Larger Loads
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2. Delay 2.7. Comparison of Inverter, NAND, NOR Gates

2.7. Comparison of Inverter, NAND, NOR Gates

¢ Complete a fair comparison assuming equal rise/fall times, equal
drive strength, only parasitic delay

tpd1—0 tpd0—1

worst best worst best

inverter

2-input NAND  w/o internal cap

2-input NAND  w/ internal cap

2-input NOR w/o internal cap

2-input NOR w/ internal cap
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2. Delay

2.7. Comparison of Inverter, NAND, NOR Gates

Use Elmore Delay to Estimate Rise/Fall Times for 2-Input NOR Gate

tpd1—0
A=0—1
B=0—1
tpd,1—>0
A =0
B=0—1
tpd1—0
A=0—>1
B =0
tpd,0—1
A =0
B=1—=0
tpd0—1
A=1—-0
B =0

14



2. Delay 2.7. Comparison of Inverter, NAND, NOR Gates

Use RC Modeling to Estimate Delay of 2-Input NAND and NOR Gates

¢ Ignore internal capacitance
* Assume worst case delay
¢ Assume an output load of 15C

15



2. Delay 2.8. Logical Effort: Single Stage

2.8. Logical Effort: Single Stage

* Logic effort (LE) is just an abstraction over RC modeling

* Logic effort (LE) is a linear delay model

e Useful for building intuition for static CMOS modeling

¢ Keep in mind often need to use a mix of RC modeling and LE

v 2}
Lai
Scaly vure R
of Teqplar '; :
R &
—E T

’Idce \%\’Io(c‘,k -I-Ce.ar
v fLe /o(

Cin = OéCt
Ri =Ryi =Ry = R¢/a
Cpi = lXCpt
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2. Dela 2.8. Logical Effort: Single Stage
y g g g

* We know the propagation delay of the gate instance is:
tpd = Ri(cout + Cpi)

* Let’s rewrite this in terms of the template

Cin = aCy
Ri =Ryi =Rz =R¢/a
Cpi = Décpt

tpa = Ri(Cout + Cpi)
= Ricout + Ricpi
R R
= JCout + Jcpi
14 14

R
—(aCpi)

R (Ci R;
- () e+ Yt

_ Ry Cout Ry
= “D(Ct< Cin ) + 2 (szpt)

R
= *tcout +
14

= RiCt (CO”’*> + R¢Cpt
Cin

17



2. Delay 2.8. Logical Effort: Single Stage

We don’t want to deal with absolute delay

* Let’s rewrite our propagation delay equation to be a “relative” delay
Relative to the delay of a single unloaded minimal inverter

Let’s start by defining some new parameters

T = Ri;yCino “relative delay units”
& = RiCt/RinyCiny logical effort
h = Cout/Ciy electrical effort
P = RiCpt/ RiyoCino parasitic delay

18



2. Delay 2.8. Logical Effort: Single Stage

* Let’s rewrite our propagation delay equation in terms of T

T = RiywCinv “relative delay units”
8 = RiCt/RinyCino logical effort
h = Cout/Ciy electrical effort
p = RiCpt/ RiyCino parasitic delay
tpa = daps = RiCy (%ut> + RiCpr
in

RinvCinv ) (Cout> (Rinvcinv>
= ——|RC + R:C
(Rinvcinv o Cin Rinvcinv i
e ) (Cout) ( RiCpt )
= RinoCino | ———— + RinyCino [
" mv(RinvCinv Cin oo Rinvcinv

Tgh+Tp
T(gh+p)

dabs = T(gh + P)

* Letd be the delay in units of T (i.e., d = gh+ p)

19



2. Delay 2.8. Logical Effort: Single Stage

Templates for Inverter, NAND, NOR Gates
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2. Delay 2.8. Logical Effort: Single Stage

Use LE to Estimate Delay of 2-Input NAND and NOR Gates

* Assume an output load of 15C

Let’s list the many approximations we have made
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2. Delay 2.9. Logical Effort: Multiple Stages

2.9. Logical Effort: Multiple Stages

¢ Path delay is the sum of the delay of each stage

D=1 di =Y (gihi+pi)
> e

¢ Calculate path delay assuming canonical sized gates

8i 1 5/3 4/3 1
h; 5/3 4/5 3/4 40/3
gi-hi 5/3 4/3 1 40/3
pi 1 2 2 1
di 267 3.33 3 14.33
D 23.33

¢ Calculate path delay assuming final gate is X16

Si 1 5/3 4/3 1

h; 5/3 4/5 48/4 40/48
gi-h; 5/3 4/3 16 40/48

pi 1 2 2 1

di 267 3.33 18 1.83

D 25.83

22



2. Delay 2.9. Logical Effort: Multiple Stages

Q1: How should we size gates to minimize total delay?

* Independent variables are #; (i.e., internal gate sizing)
* We want to choose k; to minimize D

¢ Take the partial derivative of D with respect to h;, set to zero, and
solve for optimum h;

| (-
GAre ; (¢4r'~J

(‘993"\)&\ 2 5‘?/}(}}, pPATA - ) — | 2 C
\ { - -3
Assume C puo Uy <L
Ane 1\»«,\) [ ZANKZ NS C, CL
(oqia! e4f 9. 9
Pacashe Ro\l—{ F' f >

D = (g1h1 + p1) + (§2h2 + p2)

* Note that /1y and h, are constrained since C; and C3 are given and
input cap of gate 2 is output cap for gate 1

_&

- _G hh_CZE_%
G

& G TG G

ho

* Let H = hyhy = C3/Cy, H is a constant since C; and C3 are given
¢ Let’s rework D to get it in terms of just one variable

D = (g1h1 + p1) + (2h2 + p2)

D = g1hy + g2ha + (p1 + p2)
H

Z&M+&E+Wﬁmﬁ

= g1l + &HhT ! + (p1 + p2)
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2. Delay 2.9. Logical Effort: Multiple Stages

* Take partial derivative with respect to the only variable /1,

D = g1h1 + g2Hhy ' + (p1+ p2)

oD _
§2H
:gl—i
i

* Set partial derivative to zero and solve for /1y

oD _  &H _

o~ & g 7Y
$H
81 =55
h
gihi = goH
W =32H
s

= /2H
81

¢ Can use similar approach to find optimal &; for more than 2 stages
* However, there is actually a much more interesting result!

gihi = g2H

gihi = g2hhy

g1hy = gl
fi=h

24



2. Delay 2.9. Logical Effort: Multiple Stages

¢ Delay is minimized when stage effort (f;) is the same in both stages!
o Let fbe the optimal stage effort (i.e., ]? =f1= /)
* We can use a trick to quickly calculate ]?

J?: \/]?722 \/J?J?: Vfifa
=/ (g1/1)(g2h2)

=1/(8182) (h1h2)

* Let G = g1g», this is the path logical effort
* Let H = hihy = Cout/ Ciy, this is the path electrical effort
* Let F = GH, this is the path effort

-~

f=1/(8181)(h1h2)
VGH
=+VF

* We can calculate fwithout finding the optimal size of each gate!
¢ Minimal delay with optimal sizing can be quickly calculated using:

D =2f+(p1+p2)

25



2. Delay 2.9. Logical Effort: Multiple Stages

¢ This generalizes to paths with any number of stages

G=]]si path logical effort
H=]]h= Cco:f path electrical effort
F=GH path effort
f = FUN optimal stage effort
P= Z pi path parasitic delay
D= N]?+ p min delay with opt sizing

Method for optimal sizing

1. Calculate path effort (F = GH)

2. Calculate effort for each stage (f: F1/N)

3. Estimate minimum delay with optimal sizing (D= Nf—b— P)

4. Starting with last stage, work backwards sizing each gate

= Cout C g
f 8 8 Cin in f Cout

26



2. Delay 2.9. Logical Effort: Multiple Stages

Revisit earlier example

27



2. Delay

2.9. Logical Effort: Multiple Stages

Optimal sizing with standard cells

This assumes we can size gates arbitrarily using full custom design
What about if we are using a standard cell library?

Assume we have a standard cell library with the following cells

— INVX1, INVX2, INVX4, INVX8
- NANDX1, NANDX2, NANDX4

— NORX1, NORX2, NORX4

T
T
©
l& l
1NV x|

e

TS

)
VYL AR‘{

LRt

* Assume we have determined optimal sizing in C;,
* How do we figure out which standard cell to use?

28



2. Delay 2.9. Logical Effort: Multiple Stages

¢ Given optimum Cj, from before, what is «?

Cin g Cin/(gx3C) = gate

1717C 1 17.17C/(1 x3C) =572 INVX4
9.83C  4/3 9.83C/((4/3) x 3C) = 2.45 NANDX2
7.03C 5/3 7.03C/((5/3) x 3C) = 141 NORXI
3.02C 1 3.02C/(1 x3C) =100 INVX1

* Recalculate actual delay given these gates
e First calculate actual C;;, for each standard cell gate

gate x g axgx3C = Cy

INVX4 4 1 4x1x3C =12C

NANDX2 2 4/3 2x4/3x3C = 8C
NORX1 1 5/3 1x5/3x3C = 5C
INVX1 1 1 1x1x3C = 3C

* Now use path delay equation
D=3 gh+}p
40 4 12 5 8 5
_(1xﬁ)+(§x §)+(§ X§)+(1X §)+(1+2+2+1)

=333+2+2.67+4+1.67+6=9.67+6 =15.67

* Compare with optimal delay which is 15.32, off by 2.3%

29



2. Delay 2.9. Logical Effort: Multiple Stages

What about branching?

¢ Consider the following simple example

G=1x1=1
|>)’_"7°\>°% e~ H—9c/5¢ =18
s F=GH=18

L. |>o_/\_

15< —qoC F=T]gihi
4 =(1x6)x(1x6)=236
* So in this example F = 2GH
¢ The factor of two is called the branching effort

¢ Key Idea: some drive current is directed off path we are analyzing
¢ Similar to Elmore delay for trees

Conpath + Coffpath

b= stage branching effort

Conpath
B= H b; path branching effort

* So our new path effort equation is now:

F=]]fi=GBH

* Note that path effort depends on circuit topology and loading of
entire path, but not size of transistors in network

¢ Note that path effort does not change if we add or remove inverters!

30



2. Delay 2.9. Logical Effort: Multiple Stages

Q2: How should we change topology to minimize delay?

* Assume we want to implement an eight input AND gate
¢ Calculate min delay assuming optimal sizing for three topologies
¢ First assume H = 1, then assume H = 12

_? T ;—1 )o,s _\ o - »g:j:)a_r

~1 »“ / L_\ :\ 0!\ L =~

- o= o ) 5= A
. = i ) S P
- - o "
3 :_l :L/\)aj

H=1 H=12

Topology ~ NF/N P D  NFUN P D
NANDS
NAND4
NAND2
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2. Delay 2.9. Logical Effort: Multiple Stages

Determine optimal number of stages for chain of inverters

T N S S
23

D = NFVN 4 NP,

oD
oN = FU/N - pU/N ln(Fl/N) + Piyp =0
¢ IfPy, =0
9D 1/N _ p1/Ny.(pl/N
92 _ FUN _ pUN n(FV/N) =
3N n(F/%) =0
In(FY/N) =1
FUN —
f=e

* So if we assume Py, = 0, then the optimal number of stages results
in a stage effort of e (i.e., 2.718) for every stage

¢ Since G =1 for an inverter, this means & = 2.718 for every stage

32



2. Delay 2.9. Logical Effort: Multiple Stages

If P;;;, = 1, then we need to solve this nonlinear equation:
Fl/N o Pl/Nln(Fl/N) + 1 — 0
e Letp=FV N where N is optimal number of stages

14 p(1—In(p)) =0

¢ We can solve this numerically to find that p ~ 3.59

* So if we assume Pj,, = 1, then the optimal number of stages results
in a stage effort of 3.59 for every stage

* Since G = 1 for an inverter, this means h = 3.59 for every stage

¢ We can roughly approximate 3.59 to be 4

e Let's solve for N as a function of F

Fl/N —4
log(Fl/N) =log(4)
1
— log(F) = log(4
N og(F) = log(4)

G _ log(F) _
N = log(d) log, (F)

* This is actually a pretty good estimate even for a path of gates which
are not inverters!
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2. Delay 2.9. Logical Effort: Multiple Stages
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2. Delay 2.9. Logical Effort: Multiple Stages

Now  wrik w.[ 2 Rusnany ,/-’f oM Sf‘/.\y./

do 0‘\ J‘L O‘J
D D T Do
s | A, i oA
g [ ok 3 [
Cor3gd I 4, Fohe Jd 5
() | T 3 |
(4o, + Fein) u 1
Ao - 3." s | = jo('+ 50(14—{
(JG(L) ”(
A s Ga, Y iRt
(70 + 3653) 3 1o s
dq e ~ G ta 3
(76) I
di * 3ud, T T l

Acronl DmES
AR Ee. 4l

Lo e
€ = mx( 4, 4, )+ 4,
kv 2 v (4, £,) + e
by = ko dy
£ < max (&, €)1 dy 4+ ds
* Ay (o(e’mw(da,o‘w) +d, ) rdy + dyg
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2. Delay 2.9. Logical Effort: Multiple Stages
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3. Energy

3. Energy

¢ Energy is a measure of work
¢ Power is the rate at which work is done

o x = 4
= (3 fu,uLn

Lo L o o

r/( \Arzy, Flasfaced (27 ereoqan

l”i sl lacqreel (o7 eneryy

Electric Capacity for doing work  Joules
Potential which arises from
Energy position of a charge in an
electric field
Electric Electric potential energy ~ Volts
Potential of a position per unit 1v=1J/C
charge AV =AE/Q
Current Rate at which charge Amps
flows past position 1A =1C/S
I=Q/At
Power Rate at which electric Watts
energy is supplied or 1W=1J/S
consumed P=AE/At= 52 =VI

Q/I

€ - j:m)ow
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3. Energy

Energy Stored on a Capacitor

{4 L ; - EC:/OOOP(t)dt:/OOOV(t)I(t)dt

o Vi Lo dQ e Cdo
L _/O V() dtdt_/o OR

\E L §
s - C/O P V(Hav = %CVDDZ

¢ Soon1— 0input transition, %C Vpp 2 is stored on capacitor
¢ This energy is released on 0 — 1 input transition

Energy Delivered From Power Supply

°|EL, * Esupply:/o P(t)dt:/o Vppl(t)dt
[ ; 1(x) 0o oo
= o Ty [y, [l
\ jﬁ o dt o dt
\ T Vbp
- 4! :CVDD/O dV:CVDD2

¢ 0 — 1 output transition

- CVpp? energy is delivered from power supply
— half this energy dissipated as heat in PMOS
— half this energy is stored on the capacitor

¢ 1 — 0 output transition

— no energy is delivered from power supply
— remaining energy on capacitor dissipated as heat in NMOS
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3. Energy

* On average, each bit transition requires %C Vpp?
* Let o be the activity factor, probability of a bit transitions per cycle

| 2
Enode - “jCVDD

Power Consumption

Pt = P, switching + Pstatic

1
= “fECVDD 2+ Vpplog

* Sometimes engineers will assume « is the probability of justa 0 — 1
output transition instead of the probability of any transition

— « = probability of any transition
- o/ = probability of a 0 — 1 transition only

e If you use &’ then do not include the factor of 1/2

* Note that book uses a but it is really &’ in our notation!
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3. Energy

Comparing Energy

¢ Calculate the total switched cap in worst case

-‘o\\\;\ :* (o<
b\\‘ :1/>OPL
}/0”‘>OI ] ,> 1

/ Tuo

FRRN
\6

.
“
¢

g 10/3 1 ¢ 2 5/3
p 8 1 p 4 2
G 10/3 G 10/3
H 1 H 1
B 1 B 1
F 10/3 F 10/3
f 1.8 7 18
1
Cinv,g = 1g X 10=>56 Cror,g = % x10=9.3
10/3 2
Cnand,g = 72/8 x 5.6 =104 Cnand,g = 18 x93 =103
Ctot,g = Cinv,g + 8Cnand,g Ctot,g = 2Crlor,g + 8Cnand,g
= 88.8C =101C

* To determine parasitic cap need to understand how gate cap is
distributed across transistors
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3. Energy
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3. Energy

1
Enode = "‘QCVDD 2

e Assume a = 0.1 and Vpp =1V for both
¢ Only difference is amount of switched cap

¢ For 8-input NAND topology
Ciot = Ctot,g + Ciot,p = 88.8 + (5.6 +24.96) = 119.36C

¢ For 4-input NAND topology

Ctot = Ctot,g + Ctot,p =101 + (1116 +2 X 2058) = 153.32C

* So second topology requires ~30% more energy in the worst case
* Worst case is when all capacitance is switched

¢ This ignores the energy for switching the output load

e Let’s assume C = 0.5 fF (see extra notes)

* Assume clock frequency is 500 MHz

1 1 5fF
E:ocicvpp2 = 0.1 x 5 x120C x % x (1V)% = 3f]

1
P =af5CVpp 2 = (0.5%10%)(30 x 1071°) = 1.5pW
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3. Energy

Activity Factors

¢ Previous example used fixed a = 0.1 for all nodes

¢ Can improve accuracy by:
— Propagate activity factor of inputs to internal nodes
— Use RTL to calculate activity of inputs, then propagate
— Use gate-level simulation to find activity of each node

i (og\
“N }

o> j p}D’:\:‘
/ T oy __1 /o T{ 2

P; = probability node is one on cycle i
P
w=P_1P;+Pi_1P;

= 1 — P; = probability node is zero on cycle i

o =Pi1P;

¢ Assuming inputs have uncorrelated random data
¢ Each of these is equally likely: 0—0, 0—1, 1—0, 1—1

a=P_1P;+P; 1P,=05

!

« =P;_ 1P =025

D(,

N = ﬁ\
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4. Area

Output Activity Factor of NAND?2

* Calculate output activity factor of a NAND2 gate
* Assume inputs are uncorrelated random data

¢ Output of NAND?2 is zero if both inputs one, otherwise output is one
out = Pout,i—1Pouti
= (PaPp)(1— PaPp)
= (0.5%x0.5)(1—-0.5x0.5)
= (0.25)(1 —0.25)
= 0.1875

Output Activity Factor of NANDS

4. Area

¢ Sum the transistor widths across all transistors in design
¢ Use standard cell footprints
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