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1. RC Modeling

1. RC Modeling

• Csb capacitors do not actually switch, so ignore
• Lump Cdbp + Cdbn since both tied to constant nodes
• Lump Cgsp + Cgsn since both tied to constant nodes
• Assume PMOS mobility is 2× worse than NMOS mobility
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1. RC Modeling

• Let C be the gate capacitance of minimum sized NMOS
• Let R be the effective resistance of a minimum sized NMOS
• Let k be width of a transistor relative to minimum sized NMOS

2-Input NAND Gate

Draw and label the parasitic capacitances.
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2. Delay 2.1. RC Delay of Inverter

2. Delay

• We will initially use RC modeling to estimate delay
• We will then use RC modeling to derive logical effort (LE)
• LE is a fast way to estimate delay for simple static CMOS circuits
• Often need to use a mix of RC modeling and LE

2.1. RC Delay of Inverter

1τ 2τ 3τ 4τ

0

Vdd
2

Vdd

• Let tpd be the propagation delay, time until Vout = Vdd/2

5



2. Delay 2.2. RC Delay of 2-Input NAND Gate

Vout = Vdd e−t/τ

Vdd
2

= Vdd e−t/τ

1
Vdd

Vdd
2

= e−t/τ

ln
(

1
2

)
=
−t
τ

−τ ln
(

1
2

)
= t

t = τ ln(2)

• So tpd = ln(2) · RC1

• Let R′ = ln(2) · R, so tpd = R′C1

• For inverter on previous page,
tpd = 2R′C

• We usually just assume effective
resistance is scaled by ln(2)

• So propagation delay of inverter
on previous page:

tpd = 2RC

2.2. RC Delay of 2-Input NAND Gate

• Requires complicated 2nd order model
• We can use a simple approximation

τ = τ1 + τ2 = RC1 + (R + R)C2

= RC + (2R)(3C)

= RC + 6RC = 7RC (3.5× slower than inverter)

• Best when one τ much larger than the other τ

• Even if τ1 = τ2, error is < 15%
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2. Delay 2.2. RC Delay of 2-Input NAND Gate

Generalized Elmore Delay

tpd =
all nodes

∑
i

RijCi

Assume all
resistances are R and
all capacitances are C

• Delay of path from x to y is impacted by branch to z
• Delay of path from x to z is impacted by branch to y
• For path x to y, lump C2 + C3 and use shared resistance R0 + R1

• For path x to z, lump C1 and use shared resistance R0 + R1

• This extra term estimates impact of delay due to “branch”

Tpd,xy = R0C0 + (R0 + R1 + R2)C1 + (R0 + R1)(C2 + C3)

= RC + 3RC + 4RC = 8RC

Tpd,xz = R0C0 + (R0 + R1 + R3)C2 + (R0 + R1 + R3 + R4)C3 + (R0 + R1)C1

= RC + 3RC + 4RC + 2RC = 10RC
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2. Delay 2.2. RC Delay of 2-Input NAND Gate

Use Elmore Delay to Estimate Rise/Fall Times for 2-Input NAND Gate

tpd,1→ 0

A = 1
B = 0→ 1

tpd,1→ 0

A = 0→ 1
B = 1

tpd,0→ 1

A = 1→ 0
B = 1→ 0

tpd,0→ 1

A = 1
B = 1→ 0

tpd,0→ 1

A = 1→ 0
B = 1
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2. Delay 2.3. Equal Rise/Fall Times

2.3. Equal Rise/Fall Times

tpd,1→ 0

in = 0→ 1

tpd,0→ 1

in = 1→ 0

• For equal rise/fall times, the effective resistance of pullup must
equal effective resistance of pulldown

• If we assume PMOS mobility 2× worse than NMOS, then PMOS
must be 2× size of NMOS in an inverter for equal rise/fall times
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2. Delay 2.4. Equal Drive Strength

2.4. Equal Drive Strength

• Size transistors so worst case effective resistance is equal in both the
pullup and pulldown networks.

tpd,1→ 0 tpd,0→ 1

worst best worst best

inverter

2-input NAND w/o internal cap

2-input NAND w/ internal cap

• Is this a fair comparison? No, we are not normalizing anything
across these gates. We need to either normalize:

– Input gate gap (i.e., load on previous gate)
– Drive strength (i.e., effective resistance)
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2. Delay 2.5. Larger Gates

• All three gates with equal rise/fall times and equal drive strengths

2.5. Larger Gates

tpd,1→ 0 =

tpd,0→ 1 =

• This is the parasitic delay, independent of size (k)
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2. Delay 2.6. Larger Loads

2.6. Larger Loads

tpd,1→ 0 =
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2. Delay 2.7. Comparison of Inverter, NAND, NOR Gates

2.7. Comparison of Inverter, NAND, NOR Gates

• Complete a fair comparison assuming equal rise/fall times, equal
drive strength, only parasitic delay

tpd,1→ 0 tpd,0→ 1

worst best worst best

inverter

2-input NAND w/o internal cap

2-input NAND w/ internal cap

2-input NOR w/o internal cap

2-input NOR w/ internal cap
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2. Delay 2.7. Comparison of Inverter, NAND, NOR Gates

Use Elmore Delay to Estimate Rise/Fall Times for 2-Input NOR Gate

tpd,1→ 0

A = 0→ 1
B = 0→ 1

tpd,1→ 0

A = 0
B = 0→ 1

tpd,1→ 0

A = 0→ 1
B = 0

tpd,0→ 1

A = 0
B = 1→ 0

tpd,0→ 1

A = 1→ 0
B = 0
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2. Delay 2.7. Comparison of Inverter, NAND, NOR Gates

Use RC Modeling to Estimate Delay of 2-Input NAND and NOR Gates

• Ignore internal capacitance
• Assume worst case delay
• Assume an output load of 15C
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2. Delay 2.8. Logical Effort: Single Stage

2.8. Logical Effort: Single Stage

• Logic effort (LE) is just an abstraction over RC modeling
• Logic effort (LE) is a linear delay model
• Useful for building intuition for static CMOS modeling
• Keep in mind often need to use a mix of RC modeling and LE

Cin = αCt

Ri = Rui = Rdi = Rt/α

Cpi = αCpt
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2. Delay 2.8. Logical Effort: Single Stage

• We know the propagation delay of the gate instance is:

tpd = Ri(Cout + Cpi)

• Let’s rewrite this in terms of the template

Cin = αCt

Ri = Rui = Rdi = Rt/α

Cpi = αCpt

tpd = Ri(Cout + Cpi)

= RiCout + RiCpi

=
Rt

α
Cout +

Rt

α
Cpi

=
Rt

α
Cout +

Rt

α
(αCpt)

=
Rt

α

(
Cin
Cin

)
Cout +

Rt

α
(αCpt)

=
Rt

α
αCt

(
Cout

Cin

)
+

Rt

α
(αCpt)

= RtCt

(
Cout

Cin

)
+ RtCpt
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2. Delay 2.8. Logical Effort: Single Stage

• We don’t want to deal with absolute delay
• Let’s rewrite our propagation delay equation to be a “relative” delay
• Relative to the delay of a single unloaded minimal inverter
• Let’s start by defining some new parameters

τ = RinvCinv “relative delay units”

g = RtCt/RinvCinv logical effort

h = Cout/Cin electrical effort

p = RtCpt/RinvCinv parasitic delay
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2. Delay 2.8. Logical Effort: Single Stage

• Let’s rewrite our propagation delay equation in terms of τ

τ = RinvCinv “relative delay units”

g = RtCt/RinvCinv logical effort

h = Cout/Cin electrical effort

p = RtCpt/RinvCinv parasitic delay

tpd = dabs = RtCt

(
Cout

Cin

)
+ RtCpt

=

(
RinvCinv
RinvCinv

)
RtCt

(
Cout

Cin

)
+

(
RinvCinv
RinvCinv

)
RtCpt

= RinvCinv

(
RtCt

RinvCinv

)(
Cout

Cin

)
+ RinvCinv

(
RtCpt

RinvCinv

)
= τgh + τp

= τ(gh + p)

dabs = τ(gh + p)

• Let d be the delay in units of τ (i.e., d = gh + p)
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2. Delay 2.8. Logical Effort: Single Stage

Templates for Inverter, NAND, NOR Gates
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2. Delay 2.8. Logical Effort: Single Stage

Use LE to Estimate Delay of 2-Input NAND and NOR Gates

• Assume an output load of 15C

Let’s list the many approximations we have made
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2. Delay 2.9. Logical Effort: Multiple Stages

2.9. Logical Effort: Multiple Stages

• Path delay is the sum of the delay of each stage

D = ∑ di = ∑(gihi + pi)

• Calculate path delay assuming canonical sized gates

gi 1 5/3 4/3 1

hi 5/3 4/5 3/4 40/3

gi · hi 5/3 4/3 1 40/3

pi 1 2 2 1

di 2.67 3.33 3 14.33

D 23.33

• Calculate path delay assuming final gate is X16

gi 1 5/3 4/3 1

hi 5/3 4/5 48/4 40/48

gi · hi 5/3 4/3 16 40/48

pi 1 2 2 1

di 2.67 3.33 18 1.83

D 25.83
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2. Delay 2.9. Logical Effort: Multiple Stages

Q1: How should we size gates to minimize total delay?

• Independent variables are hi (i.e., internal gate sizing)
• We want to choose hi to minimize D
• Take the partial derivative of D with respect to hi, set to zero, and

solve for optimum hi

D = (g1h1 + p1) + (g2h2 + p2)

• Note that h1 and h2 are constrained since C1 and C3 are given and
input cap of gate 2 is output cap for gate 1

h1 =
C2

C1
h2 =

C3

C2
h1h2 =

C2

C1

C3

C2
=

C3

C1

• Let H = h1h2 = C3/C1, H is a constant since C1 and C3 are given
• Let’s rework D to get it in terms of just one variable

D = (g1h1 + p1) + (g2h2 + p2)

D = g1h1 + g2h2 + (p1 + p2)

= g1h1 + g2
H
h1

+ (p1 + p2)

= g1h1 + g2Hh−1
1 + (p1 + p2)
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2. Delay 2.9. Logical Effort: Multiple Stages

• Take partial derivative with respect to the only variable h1

D = g1h1 + g2Hh−1
1 + (p1 + p2)

∂D
∂h1

= g1 − g2Hh−2
1 + 0

= g1 −
g2H
h2

1

• Set partial derivative to zero and solve for h1

∂D
∂h1

= g1 −
g2H
h2

1
= 0

g1 =
g2H
h2

1

g1h2
1 = g2H

h2
1 =

g2

g1
H

h1 =

√
g2

g1
H

• Can use similar approach to find optimal hi for more than 2 stages
• However, there is actually a much more interesting result!

g1h2
1 = g2H

g1h2
1 = g2h1h2

g1h1 = g2h2

f1 = f2
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2. Delay 2.9. Logical Effort: Multiple Stages

• Delay is minimized when stage effort ( fi) is the same in both stages!
• Let f̂ be the optimal stage effort (i.e., f̂ = f1 = f2)
• We can use a trick to quickly calculate f̂

f̂ =

√
f̂ 2 =

√
f̂ f̂ =

√
f1 f2

=
√
(g1h1)(g2h2)

=
√
(g1g2)(h1h2)

• Let G = g1g2, this is the path logical effort
• Let H = h1h2 = Cout/Cin, this is the path electrical effort
• Let F = GH, this is the path effort

f̂ =
√
(g1g1)(h1h2)

=
√

GH

=
√

F

• We can calculate f̂ without finding the optimal size of each gate!
• Minimal delay with optimal sizing can be quickly calculated using:

D̂ = 2 f̂ + (p1 + p2)
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2. Delay 2.9. Logical Effort: Multiple Stages

• This generalizes to paths with any number of stages

G = ∏ gi path logical effort

H = ∏ hi =
Cout

Cin
path electrical effort

F = GH path effort

f̂ = F1/N optimal stage effort

P = ∑ pi path parasitic delay

D̂ = N f̂ + P min delay with opt sizing

Method for optimal sizing

1. Calculate path effort (F = GH)

2. Calculate effort for each stage ( f̂ = F1/N)

3. Estimate minimum delay with optimal sizing (D̂ = N f̂ + P)

4. Starting with last stage, work backwards sizing each gate

f̂ = gh = g
Cout

Cin
Cin =

g
f̂

Cout
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2. Delay 2.9. Logical Effort: Multiple Stages

Revisit earlier example

gi 1 5/3 4/3 1

pi 1 2 2 1
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2. Delay 2.9. Logical Effort: Multiple Stages

Optimal sizing with standard cells

• This assumes we can size gates arbitrarily using full custom design
• What about if we are using a standard cell library?
• Assume we have a standard cell library with the following cells

– INVX1, INVX2, INVX4, INVX8
– NANDX1, NANDX2, NANDX4
– NORX1, NORX2, NORX4

• Assume we have determined optimal sizing in Cin
• How do we figure out which standard cell to use?
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2. Delay 2.9. Logical Effort: Multiple Stages

• Given optimum Cin from before, what is α?

Cin g Cin/(g× 3C) = α gate

17.17C 1 17.17C/(1 × 3C) = 5.72 INVX4

9.83C 4/3 9.83C/((4/3) × 3C) = 2.45 NANDX2

7.03C 5/3 7.03C/((5/3) × 3C) = 1.41 NORX1

3.02C 1 3.02C/(1 × 3C) = 1.00 INVX1

• Recalculate actual delay given these gates
• First calculate actual Cin for each standard cell gate

gate α g α× g× 3C = Cin

INVX4 4 1 4× 1× 3C = 12C

NANDX2 2 4/3 2× 4/3× 3C = 8C

NORX1 1 5/3 1× 5/3× 3C = 5C

INVX1 1 1 1× 1× 3C = 3C

• Now use path delay equation

D = ∑ gh + ∑ p

= (1× 40
12

) + (
4
3
× 12

8
) + (

5
3
× 8

5
) + (1× 5

3
) + (1 + 2 + 2 + 1)

= 3.33 + 2 + 2.67 + 1.67 + 6 = 9.67 + 6 = 15.67

• Compare with optimal delay which is 15.32, off by 2.3%
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2. Delay 2.9. Logical Effort: Multiple Stages

What about branching?

• Consider the following simple example

G = 1× 1 = 1

H = 90C/5C = 18

F = GH = 18

F = ∏ gihi

= (1× 6)× (1× 6) = 36

• So in this example F = 2GH
• The factor of two is called the branching effort
• Key Idea: some drive current is directed off path we are analyzing
• Similar to Elmore delay for trees

b =
Conpath + Coffpath

Conpath
stage branching effort

B = ∏ bi path branching effort

• So our new path effort equation is now:

F = ∏ fi = GBH

• Note that path effort depends on circuit topology and loading of
entire path, but not size of transistors in network

• Note that path effort does not change if we add or remove inverters!
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2. Delay 2.9. Logical Effort: Multiple Stages

Q2: How should we change topology to minimize delay?

• Assume we want to implement an eight input AND gate
• Calculate min delay assuming optimal sizing for three topologies
• First assume H = 1, then assume H = 12

H = 1 H = 12

Topology NF1/N P D̂ NF1/N P D̂

NAND8

NAND4

NAND2
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2. Delay 2.9. Logical Effort: Multiple Stages

Determine optimal number of stages for chain of inverters

D̂ = NF1/N + NPinv

∂D̂
∂N

= F1/N − F1/N ln(F1/N) + Pinv = 0

• If Pinv = 0

∂D̂
∂N

= F1/N − F1/N ln(F1/N) = 0

ln(F1/N) = 1

F1/N = e

f̂ = e

• So if we assume Pinv = 0, then the optimal number of stages results
in a stage effort of e (i.e., 2.718) for every stage

• Since G = 1 for an inverter, this means h = 2.718 for every stage
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2. Delay 2.9. Logical Effort: Multiple Stages

• If Pinv = 1, then we need to solve this nonlinear equation:

F1/N − F1/N ln(F1/N) + 1 = 0

• Let ρ = F1/N̂ where N̂ is optimal number of stages

1 + ρ(1− ln(ρ)) = 0

• We can solve this numerically to find that ρ ≈ 3.59
• So if we assume Pinv = 1, then the optimal number of stages results

in a stage effort of 3.59 for every stage
• Since G = 1 for an inverter, this means h = 3.59 for every stage
• We can roughly approximate 3.59 to be 4
• Let’s solve for N̂ as a function of F

F1/N̂ = 4

log(F1/N̂) = log(4)

1
N̂

log(F) = log(4)

N̂ =
log(F)
log(4)

= log4(F)

• This is actually a pretty good estimate even for a path of gates which
are not inverters!
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2. Delay 2.9. Logical Effort: Multiple Stages
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2. Delay 2.9. Logical Effort: Multiple Stages
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2. Delay 2.9. Logical Effort: Multiple Stages
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3. Energy

3. Energy

• Energy is a measure of work
• Power is the rate at which work is done

Electric
Potential
Energy

Capacity for doing work
which arises from
position of a charge in an
electric field

Joules

Electric
Potential

Electric potential energy
of a position per unit
charge

Volts
1V = 1J/C
∆V = ∆E/Q

Current Rate at which charge
flows past position

Amps
1A = 1C/S
I = Q/∆t

Power Rate at which electric
energy is supplied or
consumed

Watts
1W = 1J/S
P = ∆E/∆t = ∆V·Q

Q/I = VI
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3. Energy

Energy Stored on a Capacitor

EC =
∫ ∞

0
P(t)dt =

∫ ∞

0
V(t)I(t)dt

=
∫ ∞

0
V(t)

dQ
dt

dt =
∫ ∞

0
V(t)

Cdv
dt

dt

= C
∫ VDD

0
V(t)dV =

1
2

CVDD
2

• So on 1→ 0 input transition, 1
2 CVDD

2 is stored on capacitor
• This energy is released on 0→ 1 input transition

Energy Delivered From Power Supply

Esupply =
∫ ∞

0
P(t)dt =

∫ ∞

0
VDD I(t)dt

= VDD

∫ ∞

0

dQ
dt

dt = VDD

∫ ∞

0

Cdv
dt

dt

= CVDD

∫ VDD

0
dV = CVDD

2

• 0→ 1 output transition

– CVDD
2 energy is delivered from power supply

– half this energy dissipated as heat in PMOS
– half this energy is stored on the capacitor

• 1→ 0 output transition

– no energy is delivered from power supply
– remaining energy on capacitor dissipated as heat in NMOS
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3. Energy

• On average, each bit transition requires 1
2 CVDD

2

• Let α be the activity factor, probability of a bit transitions per cycle

Enode = α 1
2 CVDD

2

Power Consumption

Ptot = Pswitching + Pstatic

= α f
1
2

CVDD
2 + VDD Ioff

• Sometimes engineers will assume α is the probability of just a 0→ 1
output transition instead of the probability of any transition

– α = probability of any transition
– α′ = probability of a 0→ 1 transition only

• If you use α′ then do not include the factor of 1/2

• Note that book uses α but it is really α′ in our notation!
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3. Energy

Comparing Energy

• Calculate the total switched cap in worst case

g 10/3 1

p 8 1

G 10/3

H 1

B 1

F 10/3

f̂ 1.8

Cinv,g =
1

1.8
× 10 = 5.6

Cnand,g =
10/3
1.8
× 5.6 = 10.4

Ctot,g = Cinv,g + 8Cnand,g

= 88.8C

g 2 5/3

p 4 2

G 10/3

H 1

B 1

F 10/3

f̂ 1.8

Cnor,g =
5/3
1.8
× 10 = 9.3

Cnand,g =
2

1.8
× 9.3 = 10.3

Ctot,g = 2Cnor,g + 8Cnand,g

= 101C

• To determine parasitic cap need to understand how gate cap is
distributed across transistors
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3. Energy

41



3. Energy

Enode = α 1
2 CVDD

2

• Assume α = 0.1 and VDD = 1V for both
• Only difference is amount of switched cap

• For 8-input NAND topology

Ctot = Ctot,g + Ctot,p = 88.8 + (5.6 + 24.96) = 119.36C

• For 4-input NAND topology

Ctot = Ctot,g + Ctot,p = 101 + (11.16 + 2× 20.58) = 153.32C

• So second topology requires ≈30% more energy in the worst case
• Worst case is when all capacitance is switched
• This ignores the energy for switching the output load
• Let’s assume C = 0.5 fF (see extra notes)
• Assume clock frequency is 500 MHz

E = α
1
2

CVDD
2 = 0.1× 1

2
× 120C× 0.5 f F

C
× (1V)2 = 3fJ

P = α f
1
2

CVDD
2 = (0.5× 109)(30× 10−15) = 1.5µW
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3. Energy

Activity Factors

• Previous example used fixed α = 0.1 for all nodes
• Can improve accuracy by:

– Propagate activity factor of inputs to internal nodes
– Use RTL to calculate activity of inputs, then propagate
– Use gate-level simulation to find activity of each node

Pi = probability node is one on cycle i

Pi = 1− Pi = probability node is zero on cycle i

α = Pi−1Pi + Pi−1Pi

α′ = Pi−1Pi

• Assuming inputs have uncorrelated random data
• Each of these is equally likely: 0→0, 0→1, 1→0, 1→1

α = Pi−1Pi + Pi−1Pi = 0.5

α′ = Pi−1Pi = 0.25

α′ =
1
2

α
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4. Area

Output Activity Factor of NAND2

• Calculate output activity factor of a NAND2 gate
• Assume inputs are uncorrelated random data
• Output of NAND2 is zero if both inputs one, otherwise output is one

α′out = Pout,i−1Pout,i

= (PAPB)(1− PAPB)

= (0.5× 0.5)(1− 0.5× 0.5)

= (0.25)(1− 0.25)

= 0.1875

Output Activity Factor of NAND8

4. Area

• Sum the transistor widths across all transistors in design
• Use standard cell footprints

44


