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« RTL to Logic Synthesis Technology-Independent Synthesis Technology-Dependent Synthesis
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« RTL to Logic Synthesis Technology-Independent Synthesis Technology-Dependent Synthesis

Step 1: Single Assighment Form

1 // 1b inputs: y, z, a, q For each output, create exactly
2 // 2b inputs: f one assignment that is a function
3 // 3b inputs: g, c, b, e _
A only of the inputs
5 wire x =y && z;
6 . _ .
; wire [2:0] b 1 wire x =y && z;

= (a) 7 {2'b0,x} : c; :
Z ' ’ T 3 wire [2:0] b

= 7 12'b0, : C;

10 wire [2:0] d, h; : (a) { x}¥ ¢
11 always Q(*) begin s wire [2:0] d
5 d=be 7= (@ 7 3'biol

- L 8 ((a) ? {2'b0,x} : c)
14 if (g ) d = 3'b101; 9 + oe:
15

£ 10
16 * b = 3'0: 11 wire [2:0] h
' - ’ 2 = (f) 273b0 : (g<<1);
18 else
19 h =g << 1;
20
21 end
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« RTL to Logic Synthesis Technology-Independent Synthesis

Technology-Dependent Synthesis

Step 2: Bit Blast Outputs

1
2 // 2b inputs: f
3 // 3b inputs: g, c, b, e
4
5 wire x =y && z;
6
7 wire [2:0] b
8 = (a) ? {2'b0,x} : c;
9 1 Wwire
10 wire [2:0] h 5
11 = (£f) 7 3'p0 3 wire
12 (g <<1); 4 wire
5 wire
6
7 wWire
8 wire
9 wire

X =y && z;

b[0] = (a) 7 x : cl[0];
bl[1] = (a) ? 1'b0 : c[1];
b[2] = (a) ? 1'b0 : c[2];
h[{0] = (£[0]J|£f[1]) ? 1'bO :
h[{1] = (£[0]J|£f[1]) ? 1'bO :
h[(2] = (£[0]J|£f[1]) ? 1'bO :

// 1b inputs: y, z, a, 9 Generate separate assignment for each
bit, removes arithmetic operators leaving
only boolean operators (assume ternary
operator is short hand for equivalent
boolean operator)

1'b0;
glo0];
gli];
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« RTL to Logic Synthesis

Technology-Independent Synthesis

Technology-Dependent Synthesis

RTL Datapath Synthesis

wire [15:0] a= b + c;

Co

Ripple-Carry

(16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0)

¢ 'd [E
o

= i | | B
| | e

1

|16:O 15:0 14:0 13:0 12:0 11:0 10:0 9:0 80 7:0 6:0 5:0 4:0 3.0 2:0 1:0 0:0

Carry Lookahead

15:12 1:8 74 3:0

%
15:0 —m[l:(
Y

m¢£¢“¢¢

|15:0 14:0 13:0 12:0 11:0 10:0 90 80 7:0 &0 50 40 30 20 10 0:0|

|15,0 14:0 13:0 1220 11:0 10:0 90 80 7.0 60 50 40 30 220 10 0,0|

(a) Brent-Kung

(d) Han-Carlson

(15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0)

I15:0 14:0 13:0 12:0 11:0 10:0 80 &0 7.0 60 50 40 30 20 1.0 U:UI

I15:0 14:0 13:0 12:0 11:0 10:0 9:0 80 7:0 &0 50 40 30 20 10 O:UI

(b) Sklansky

(5 14 13 2 11 10 9 8 7 6 5 4 3 2 1 0)

15:1414:13 (131201211 111:10]10:9 | 9:8 | 8:7 | 7:6 | 6:5 1 5:4 | 43 |32 | 2.1 1 1:0

15:12(14:11(13:10| 129 118{10:7.1 961 8:5| 74 ) 6:3 | 5:2 1 4:1 | 3¢ 2:

15:8| 14:7| 13:6| 12:5| 11:4] 10:3] 9:2| 8:1 | 7. 6 5 4:

(e) Knowles [2,1,1,1]

(‘15 14 13 12 " 10 g

15:14) 13:12] 11:10 9:8 :
15:12] 11:8 2
15:8 13:8] Y :

15:8 13:0]

|15:U 14:0 13:0 1220 11:0 70:0 90 80 7:0 60 S50 4.0 30 20 10 U:UI

|15:l’) 14:0 13:0 12:0 11:0 10:0 90 80 7:0 60 50 40 30 2:0 1.0 00

(c) Kogge-Stone

(f) Ladner-Fischer

Parallel-Prefix Tree-Based

Adapted from [Weste’'11]
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« RTL to Logic Synthesis

Technology-Independent Synthesis

Technology-Dependent Synthesis

DWBB Quick Reference

DWO01_add DesignWare
Adder Building Blocks
DWO01_add

Adder

% Parameterized word length

< Carry-in and carry-out signals
y y g

Table 1-1 Pin Description
Pin Name Width Direction Function
A width bit(s) Input Input data
B width bit(s) Input Input data
Cl 1 bit Input Carry-in
SUM width bit(s) Output Sum of (A + B + Cl)
CcO 1 bit Output Carry-out
Table 1-2 Parameter Description
Parameter Values Description
width 21 Word length of A, B, and SUM
Table 1-3 Synthesis Implementations?
Implementation Function License Feature Required
rpl Ripple-carry synthesis model none
cla Carry-look-ahead synthesis model none
pparch Delay-optimized flexible parallel-prefix DesignWare

a. During synthesis, Design Compiler will select the appropriate architecture for your constraints. However, you may force
Design Compiler to use one of the architectures described in this table. For more details, please refer to the

DesignWare Building Block IP User Guide.

Example from
Synopsys
DesignWare

RTL Datapath
Synthesis directly
transforms arithmetic
operators into
technology
iIndependent
optimized gate-level
netlists

Adapted from [Synopsys’11]
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RTL to Logic Synthesis - Technology-Independent Synthesis ° Technology-Dependent Synthesis

Part 3: CAD Algorithms
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RTL to Logic Synthesis - Technology-Independent Synthesis ° Technology-Dependent Synthesis

Technology-Independent Synthesis

» Two-level boolean minimization — based on assumption that
reducing the number of product terms in an equation and reducing the
size of each product term will result in a smaller/faster implementation

» Optimizing finite-state machines — look for equivalent FSMs (i.e.,
FSMs that produce the same outputs give the same sequence of
inputs) that have fewer states

» FSM state encodings — minimize implementation area (= size of state
storage + size of logic to implement next state and output functions).

Note that none of these optimizations are completely isolated from the

target technology, but experience has shown that it's advantageous to

reduce the size of the problem as much as possible before starting the
technology-dependent optimizations.

ECE 5745 T12: Synthesis Algorithms 9/43




RTL to Logic Synthesis - Technology-Independent Synthesis ° Technology-Dependent Synthesis

Karnaugh Map Method Review

» 1. Choose an element of ON-set not already covered by an implicant

> 2. Find “maximal” groups of 1's and X’s adjacent to that element.
Remember to consider top/bottom row, left/right column, and corner
adjacencies. This forms prime implicants.

» Repeat steps 1 and 2 to find all prime implicants

» 3. Revise the 1's elements in the K-map. If covered by single prime
implicant, it is essential, and participates in the final cover. The 1’s it
covers do not need to be revisited.

> 4. |f there remain 1’s not covered by essential prime implicants, then
select the smallest number of prime implicants that cover the
remaining 1’s

ECE 5745 T12: Synthesis Algorithms 10/ 43




RTL to Logic Synthesis - Technology-Independent Synthesis ° Technology-Dependent Synthesis

Karnaugh Map Method Example

AB | A | AB I A | AB | A |
cDN 00 01 ' 11 10 cDN 00 01 ' 11 10 cON 00 o1 ' 11 10
ol x il o | 1 oo [ XTIl o | ool x || o |4
or| o [T | NI EIRIERIIE o1 o 11| | [T [
D D D
11| o l|Ix|] x!| o 1] o lIx|| x| o 1mlo [Ixl] x| o
C - C - C -
10| o0 |[1|] o | 1 1ol o 1] o |7 100 [[1l] o [[1
| ] 1 ] L ]
B B B
Primes around Primes around Essential Primes
L] n »
ABC'D AB'C'D' with Min Cover

Adapted from [Zhou’02]
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RTL to Logic Synthesis - Technology-Independent Synthesis ° Technology-Dependent Synthesis

Quine-McCluskey (QM) Method

» Quine-McCluskey method is an exact alogorithm which finds a
minimum-cost sum-of-products implementation of a boolean function

» Four main steps
> 1. Generate prime implicants

> 2. Gonstruct prime implicant table

> 3. Reduce prime implicant table
a. Remove essential prime implicants
b. Row dominance
c. Column dominance
d. lterate at this step until no further reductions

> 4. Solve prime implicant table

ECE 5745 T12: Synthesis Algorithms 12 /43




RTL to Logic Synthesis

» Technology-Independent Synthesis * Technology-Dependent Synthesis

QM Example #1 — Step 1

Start by expressing your Boolean function using O-
terms (product terms with no don’t care care entries).
For compactness the table for example 4-input, 1-
output function F(w,x,y,z) shown to the right includes
only entries where the output of the function is 1 and
we've labeled each entry with it’s decimal equivalent.

HRRrRrRRKHROOOSE

HHOOOOKRHKONX

HFRPRHHOOKHOORK

HOHOROKKEKON
©

Look for pairs of O-terms that differ in only one bit position and merge
them in a 1-term (i.e., a term that has exactly one = entry). Next 1-terms
are examined in pairs to see if the can be merged into 2-terms, etc. Mark
k-terms that get merged into (k+1) terms so we can discard them later.

1-terms:

Example due to
Srini Devadas

0, 8
5, 7
7,15
8, 9
8,10
9,11
10,11
10,14
11,15
14,15

-000 [A] 2-terms: 8, 9,10,11 10--[D]
01-1 [B] 10,11,14,15 1-1-[E]
-111 [C]

100-

10-0 S-terms:  none!

10-1

101- Label unmerged terms:
1-10 these terms are prime!
1-11

111-

Adapted from [Terman’02]
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RTL to Logic Synthesis - Technology-Independent Synthesis ° Technology-Dependent Synthesis

QM Example #1 — Step 2, Step 3a

An “X” in the prime term table in row R and column C signifies that the O-
term corresponding to row R is contained by the prime corresponding to
column C.

ABCDE
Goal: select the minimum 0000 X . . . . —>Aisessental
set of primes (columns) gigi B >Bis essential
such that there is at least 1000 X . . X
one “X” in every row. This 1001 - X . ——Disessential
, , . 1010 . X X
is the classical minimum 1011 % x
covering problem. 1110 . . . . X —>Eisessential
1111 . . X . X

Each row with a single X signifies an essential prime term since any prime
implementation will have to include that prime term because the
corresponding O-term is not contained in any other prime.

In this example the essential primes “cover” all the O-terms.

Adapted from [Terman’02]

ECE 5745

T12: Synthesis Algorithms 14/ 43




RTL to Logic Synthesis

» Technology-Independent Synthesis *

Technology-Dependent Synthesis

Column Dominance

» 5 prime implicants, each
covers 2 ON-set minterms

» A'C'D’ and ACD are essential

prime implicants, must be in
final cover

» Pick min subset of remaining
3 prime implicants which
covers ON-set

essential

AB
00 01 11 10

00 (@ 0
o1 0 @E 0;
o |

0

0

CD

essential

Karnaugh map with set of prime implicants:

illustrating "column dominance"

Adapted from [Nowick’'12]
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RTL to Logic Synthesis - Technology-Independent Synthesis °

Technology-Dependent Synthesis

Column Dominance

» Cross out columns A'C’'D’ and
ACD since they are essential

» Each row intersected by one
of the essential prime
columns is also crossed out
because that minterm is
already covered

A'C’D" A'BC" BC'D ABD ACD
04) 4,5 (5,13) (13,15) (11,15)

0 X
4 X X
5 X X
11 X
13 X X
15 X X

» BC'D covers minterm 5 and 13, but A'BC’ only covers minterm 5 and

ABD only covers minterm 13

» BC’D column dominates A’'BC’ and ABD, dominated prime implicants

can be crossed out

» Only column BC’D remains

Adapted from [Nowick’'12]
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RTL to Logic Synthesis

» Technology-Independent Synthesis *

Technology-Dependent Synthesis

Row Dominance

» 4 prime implicants, no
essential prime implicants

» Pick min subset of the 4
prime implicants to cover the

5 ON-set minterms

CD

00

01

11

10

AOOO
NEE
G EENE
LT

Adapted from [Nowick’'12]
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RTL to Logic Synthesis - Technology-Independent Synthesis °

Technology-Dependent Synthesis

Row Dominance

» Row 3 is contained in 3 AB  C'D AD AC
columns: A'B’, A'D, and A'C (123) 1,5 (1357 (23,7
> Row 2 is covered by two of ; § A . X
thgse ’Fhreg columqs, SO any 3 % X X
prime implicant which 5 X X
contains row 2 also contains 7 X X

row 3

» Row 7 is covered by two of these three columns, so any prime
implicant which contains row 7 also contains row 3

» Thus we can ignore row 3, it will always be covered as long as cover

row 2 or row 7/

» Cross out row 3, similarly row 1 dominates row 5 so cross out row 1

Adapted from [Nowick’'12]
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RTL to Logic Synthesis

» Technology-Independent Synthesis *

Technology-Dependent Synthesis

QM Example #2 — Step 1

Column 1 Column 11 Column 111

0 0000 +/ 0,2) 00-0 +/ (0,2,8,10) -0-0
2 0010 +/ 0,8) -000 +/ (0,8,2,10) -0-0
g8 1000 +/ (2,6) 0-10 +/ (2,6,10,14) -10
5 0101 +/ (2,100 -010 +/ (2,10,6,14) -10
6 0110 +/ (8,10) 10-0 +/ (8,10,12,14) 1-0
10 1010 +/ (8,12) 1-00 +/ (8,12,10,14) 1-0
12 1100 +/ 5,79 01-1 / (5,7,13,15) -1-1
7 0111 / (5,13) -101 / (5,13,7,15) -1-1
13 1101 +/ 6,7) 011- 4/ (6,7,14,15) -11-
14 1110 / 6,14) -110 +/ (6,14,7,15) -11-
15 1111 / (10,14) 1-10 +/ (12,13,14,15) 11—
(12,13) 110- +/ (12,14,13,15) 11—

(12,14) 11-0 +/

(7,15) -111 4/ Eliminate redundant

(13,15 11-1 -/ entries in table

(14,15) 111- 4/

Adapted from [Nowick’12]
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RTL to Logic Synthesis - Technology-Independent Synthesis ° Technology-Dependent Synthesis

QM Example #2 — Step 2, Step 3a

B'D’ (%) CD’ BD(x) BC AD' AB
0,2,8,10)0 (2,6,10,14) (5,7,13,15) (6,7,14,15) (8,10,12,14) (12,13,14,15)
()0 X
2 X X
(0)5 X
6 X X
7 X X
8 X X
10 X X X
12 X X
13 X X
14 X X X X
15 X X X

* indicates an essential prime implicant

o indicates a distinguished row, i.e. a row covered by only 1 prime implicant

Adapted from [Nowick’12]
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RTL to Logic Synthesis

» Technology-Independent Synthesis * Technology-Dependent Synthesis

QM Example #2 — Step 3b, 3c, 3a

3.b Row Dominance — row 14

D’ BC AD' AB
(2,6,10,14) (6,7,14,15) (8,10,12,14) (12,13,14,15)  dominates both row 6 and 12;
o . N N remove row 14 since if some
14 X X X X product covers row 6, row 14 is
guaranteed to be covered
‘ oD BC AD AB 3.c Column Dominance - column
(2,6,10,14) (6,7,14,15) (8,10,12,14) (12,13,14,15) CD’ dominates Co|umn BC (actua”y
6 X X h . .
12 < < they co-dominate each other);
remove column BC since it is
redundant with column CD’
C D' (xx) AD (xx . .
(2,6,15),14) (8,10,12,1)4) 3.a Remove Essential Prime
()6 ‘ X Implicants — second iteration of
(0)12 X .. .
step 3, both remaining prime
implicants are essential
F=BD +BD +CD’ + AD’
Adapted from [Nowick’12]
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RTL to Logic Synthesis - Technology-Independent Synthesis ° Technology-Dependent Synthesis

QM Example #3 — Step 2

F(A,B,C,D) =¥m(0,2,3,4,5,6,7,8,9,10,11, 12, 13)

A'D B'D C'D AC BC AB BC AB AC
0 X X X
2 X X X X
3 X X
4 X X X X
5 X X
6 X X X
7 X X
8 X X X X
9 X X
10 X X X
11 X X
12 X X X
13 X X

Adapted from [Nowick’12]
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RTL to Logic Synthesis - Technology-Independent Synthesis ° Technology-Dependent Synthesis

QM Example #3 — Step 3a, 3b, 3c, 3a

» 3a. No essential prime implicants

» 3b. Row dominance: 2>3, 4>5, 6>7,8>9, 10>11, 12>13

A'D' B'D CO'D AC BC AB BC AB AC
0 X X X
3 X X
5 X X
7 X X
9 X X
11 X X
13 X X
©)0 ADX(**) A¢ pe 4B BC AP AC 3.c Column Dominance — column
3 X X A’'D’, B'D’, and C’D’ dominate each
3 " § A other; remove any two of them
9 X X . .
1 % X 3.a Remove Essential Prime
13 X X Implicants — second iteration of

** indicates a secondary essential prime implicant

o indicates a distinguished row

step 3, remove A'D’
Adapted from [Nowick’12]
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RTL to Logic Synthesis

» Technology-Independent Synthesis * Technology-Dependent Synthesis

QM Example #3 — Step 4

A'C B'C A'B BC' AB AC
3] X X
5 X X
7| X X
9 X X
11 X X
13 X X

No essential prime implicants; no row dominance; no column dominance
Cyclic covering problem — can be solved using a branch-and-bound
search technique (see notes for details)

Adapted from [Nowick’12]
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RTL to Logic Synthesis - Technology-Independent Synthesis ° Technology-Dependent Synthesis

Heuristic Espresso Method

» Quine-McCluskey

> Number of prime implicants grows rapidly with number of inputs
> Finding a minimum cover is NP-complete (i.e., computationally expensive)

» Espresso
> Don’t generate all prime implicants (i.e., QM step 1)
> Carefully select a subset of primes that still covers ON-set
> Heuristically explore space of covers
> Similar in spirit (but more structured) to finding primes in K-map

Adapted from [Zhou’02]
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RTL to Logic Synthesis - Technology-Independent Synthesis ° Technology-Dependent Synthesis

Redundancy in Boolean Space

» Every point in boolean space is an assignment of values to variables
» Redundancy involves inclusion or covering in boolean space
» Irredundant cover has no redundancy

001 011 001 011

D 0O D 0O

10 111/ 10 ‘rﬂ?/

00 4 010, 00{) 010 |

10 110/ 10 /110/
g =AB'C, h=AB' f=AC,g=B'C, h=AB

g is redundant h is redundant

Can exhaustively check if each
prime is redundant with any other prime

Adapted from [Zhou’02]
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RTL to Logic Synthesis - Technology-Independent Synthesis ° Technology-Dependent Synthesis

Irredundant Covers vs. Minimal Covers

» Irredundant cover is not necessarily a minimal cover

» Can use reduce, expand, remove redundancy operations to explore
space of irredundant covers

BC BC
AN\ 00 01 11 10 AN\ 00 01 11 10
0|0 |G\[D]|o 0| 0 |@ 0
A D D
1{M|\J]o |0 1{@M|MD]o|o0
Original Irredundant Cover Reduce
F=B'C+A'C+AB'C'/ F=AB'C + AC + AB'C'
BC BC
A\ _00 01 11 10 A\ _00 01 11 10
olo|d|D|o olo|d| Dlo
— ——
11/ D00 1@ Djo|o
Expand New Irredundant Cover
F=AB'+A'C + AB'C' F=AB'+A'C

Adapted from [Zhou’02]
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RTL to Logic Synthesis

» Technology-Independent Synthesis * Technology-Dependent Synthesis

Espresso Algorithm

vV v v v v Y%

6. Goto step 3

1. EXPAND implicants (choice of which implicants requires heuristic)
2. REMOVE-REDUNDANCY
3. REDUCE implicants (choice of which implicants requires heuristic)
4. EXPAND implicants (choice of which implicants requires heuristic)

5. REMOVE-REDUNDANCY

Adapted from [Zhou’02]
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RTL to Logic Synthesis - Technology-Independent Synthesis ° Technology-Dependent Synthesis

Espresso Example

A
coN\._ 00 01 11 10
oo | [1 1 0 0
o1 | |1 1 1 1
_ D
11| o | o 1 1
C _
10 | [1 1 1 1
- I |
B

Initial Set of Primes found by
Steps1 and 2 of the Espresso
Method

4 primes, irredundant cover,
but not a minimal cover!

A
cD 00 01 11 10
00 1 1 0 0
01 1 1 1 1
_ D
11 0 0 1 1
C _
10 1 1 1 1
- [ |
B
Result of REDUCE:

Shrink primes while still
covering the ON-set

Choice of order in which
to perform shrink is important

Adapted from [Zhou’02]
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RTL to Logic Synthesis - Technology-Independent Synthesis ° Technology-Dependent Synthesis

Espresso Example

A A
AB , , AB : ,
cpN\. 00 01 11 10 cp\. 00 01 11 10
00 | |1 1 0 0 00 | |1 1 0 0
o1 | |1 1 1 1 01 1 1 1 1
_ D _ D
11| o 0 1 1 1| o 0 1 1
C _ C _
10 [ |1 1 1 1 10 | |1 1 1 1
- | I - | |
B B
Second EXPAND generates a REMOVE-REDUNDANCY
different set of prime implicants generates

only three prime implicants!

Adapted from [Zhou’02]
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RTL to Logic Synthesis - Technology-Independent Synthesis ° Technology-Dependent Synthesis

Two-Level Logic vs. Multi-Level Logic

2-Level:

f; = AB+ AC + AD
f, = AB+ AC + AE

6 product terms which cannot be shared.
24 transistors in static CMOS

Multi-level:

Note that 5 + C'is a common term in f, and £,

K=B+C 3 Levels

f; = AK+ AD 20 transistors in static CMOS
£, = AK + AE not counting inverters
=

Adapted from [Devadas’06]
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RTL to Logic Synthesis - Technology-Independent Synthesis ° Technology-Dependent Synthesis

Two-Level Logic vs. Multi-Level Logic

» Two-Level Logic

> At most two gates between primary input and primary output
> Real life circuits: programmable logic arrays

> Exact optimization methods: well-developed, feasible

> Heuristic methods also possible

» Multi-Level Logic

> Any number of gates between primary input and primary output
> Most circuits in real life are multi-level

> Smaller, less power, and (in many cases) faster

> Exact optimization methods: few, high complexity, impractical

> Heuristic methods pretty much required

ECE 5745 T12: Synthesis Algorithms
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RTL to Logic Synthesis Technology-Independent Synthesis - Technology-Dependent Synthesis *

Part 3: CAD Algorithms
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RTL to Logic Synthesis Technology-Independent Synthesis - Technology-Dependent Synthesis *

Technology Mapping

» Once minimized logic equations, next step is to map each equation to
the gates in the target standard cell library

» Classic approach uses DAG covering (K. Keutzer)

> “Normal Form” : use basic gates (e.g., 2-input NAND gates, inverters)
> Represent logic equations as input netlist in normal form (subjective DAG)

> Represent each library gate in normal form (primitive DAG)
> GOAL: Find a min cost covering of subjective DAG by primitive DAGs

» Sound algorithmic approach, but is NP-hard optimization problem

/ multiple fanout
D, L B
— |

Adapted from [Devadas’06]
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Tree Heuristic Transformation

If subject and primitive DAGs are trees, efficient algorithm can find
optimum cover in linear time via dynamic programming, SO use tree
covering heuristic approach by partitioning graph into subtrees

Original Graph Partitioned Graph

Adapted from [Devadas’06]
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Technology Mapping Example

Problem statement: find an “optimal” mapping of this circuit:

1
>

Loy,

Into this library:

> 1 » 9 >

T12: Synthesis Algorithms

> D> >

Adapted from [Terman’02,Devadas’06]
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Primitive DAGs for Standard-Cell Library Gates

INVERTER 2
NAND2 3
NAND3 4
NAND4 5
AOI21 4
AOI22 5

o
y

Element/Area Cost Tree Representation (nermal form)

1o

1>
[ >
D,

;

3

5>

7

.t
Do

Adapted from [Terman’02,Devadas’06]

ECE 5745

T12: Synthesis Algorithms 37 /43




RTL to Logic Synthesis Technology-Independent Synthesis - Technology-Dependent Synthesis *

Possible Covers

EJDHD_%ﬂ@ Do %DF[D—V—-D—D»—]D
ol —— Lo Do
DrHboh—y DD
e,
o W e

Area cost 31 Area cost 19

1 > o
i Hmmm. Seems promising but
-DD— B . .
To— is there a systematic and
P efficient way to arrive at the
optimal answer?
1INV = 2
1 NAND2 =3
2 NAND3 =8
1 AOI21 =4

Area Cost 17
Adapted from [Terman’02,Devadas’06]
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Use Dynamic Programming!

Principle of optimality: Optimal cover for a tree consists of a best match
at the root of the tree plus the optimal cover for the sub-trees starting
at each input of the match.

Best cover for this

match uses best
44/ ) >% covers for P, X& Y
_—v
"Q/Y Z
Complexity:

To determine the optimal cover for a
tree we only need to consider a
best-cost match at the root of the
tree (constant time in the number of ﬁ
matched cells), plus the optimal

cover for the subtrees starting at

each input to the match (constant @
time in the fanin of each match) —» o
O(N)

\

Best cover for this
match uses best
covers for P & Z

Adapted from [Terman’02,Devadas’06]
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Optimal Tree Covering Example

3 Step 1. 3 N ) Step 2.
L L=

2 —D'O' . _DO'_I

2 | e 2 | Do
o » I AT

[

. Step 3. . Step 4.
D_i " : Cover with INV or AO21 ?
' [ D,
2 [ Dot
2 —Dc
2 [pot— 2
Ny . D:
LA iy
N\ 2
N
Cover with ND2 or ND3 ?
1 AO21 4
1 NAND2 3 1 NAND3 =4 + subtree 1 3
+ subtree 5 Minertar 2 + subtree 2 2—
Area cost 8 + subtree -
Area cost 13 Area cost 9

Adapted from [Terman’02,Devadas’06]
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Optimal Tree Covering Example

Step 5.

Cover with ND2Z or ND3 ?

iy o B e

Ay

subtrea 1

8
NAND2 oy btres 2 4
3

1 NAND2

Area cost 16

subtree 1

]
subtree 2 2 NAKD2
subtree 3 4
1 MAND3 4_
Area cost 18
Step 7.
Cover with ND2 or ND3 or ND4 ?

r

y

T

/

Step 6.
Cover with IN\?OIN ?
=" . i
™
1 prDe
subtree 1 11
INy  Subtree 1 16 AOI21  subtree 2 5
1INV 2 1 AOI21 4
Area cost 18 Area cost 20

Step 7a.
1 > 0 Cover with ND2 ?

I

DTD%—DD_ rvey

ot

LD,

4

subtree 1 18
subtree 2 0
1 NAND2 3

Area cost 21

Adapted from [Terman’02,Devadas’06]
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Optimal Tree Covering Example

Step 7c.
@_ 8 Cover wiﬁti%a??b' Cover with ND4 ?
o1
Dy, Db, |
4
b 1 8
Sbtee2 4 Shrees 2
TNANDs 4 Subtreed 0
1 NAND3 4
Area cost 17 1 NANﬂl?ria cost 1'%_
ND2
@_ AOI21 Cover with ND3?
no3  /
v [ Do ‘% This matches our earlier intuitive cover,
but accomplished systematically.
ND3 Refinements: timing optimization
Ny , incorporating load-dependent delays,
2 ND3 2 optimization for low power.
AOI21 4

Area cost 17

Adapted from [Terman’02,Devadas’06]
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