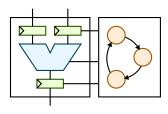
ECE 5745 Complex Digital ASIC Design Topic 13: Physical Design Automation Algorithms

Christopher Batten

School of Electrical and Computer Engineering Cornell University

http://www.csl.cornell.edu/courses/ece5745

Part 3: CAD Algorithms



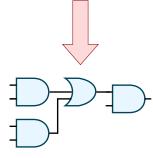
RTL to Logic Synthesis

$$x = a'bc + a'bc'$$

 $y = b'c' + ab' + ac$

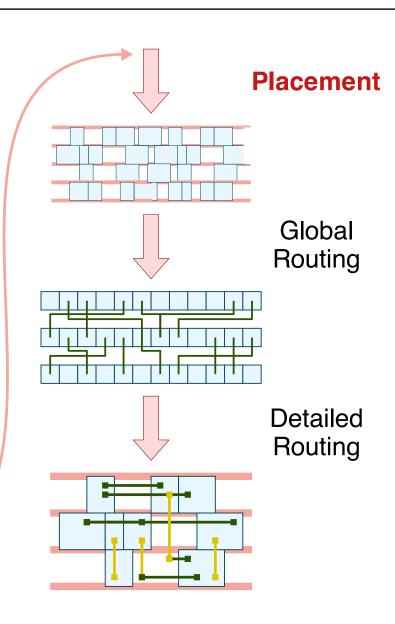
$$x = a'b$$

 $y = b'c' + ac$

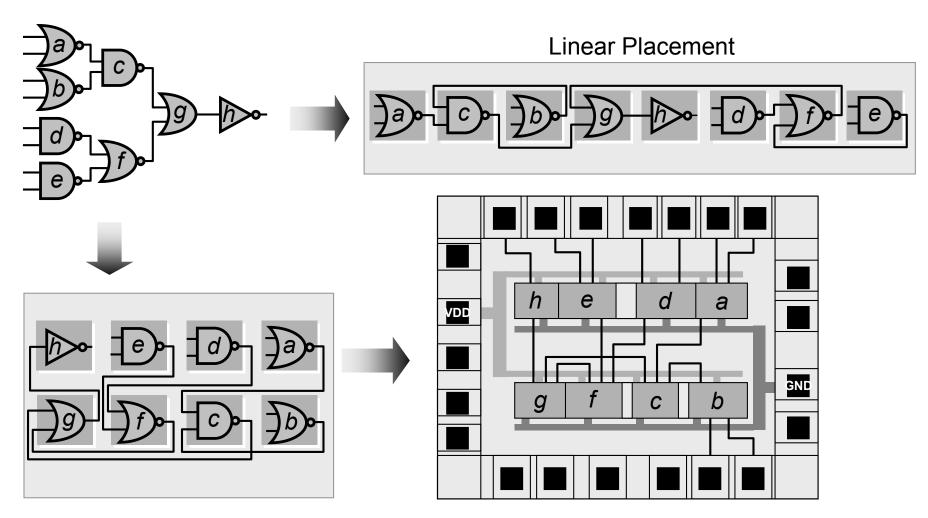


Technology Independent Synthesis

Technology Dependent Synthesis



Placement



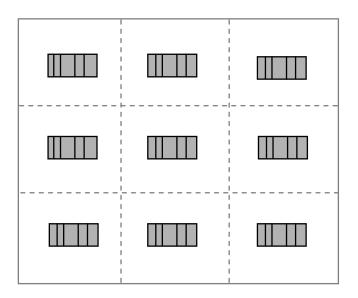
2D Placement

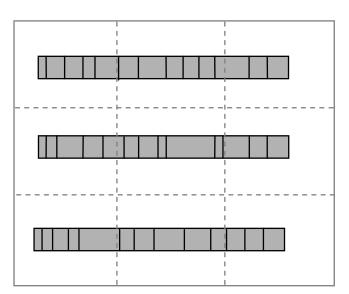
Placement and Routing with Standard Cells

Global vs. Detailed Placement

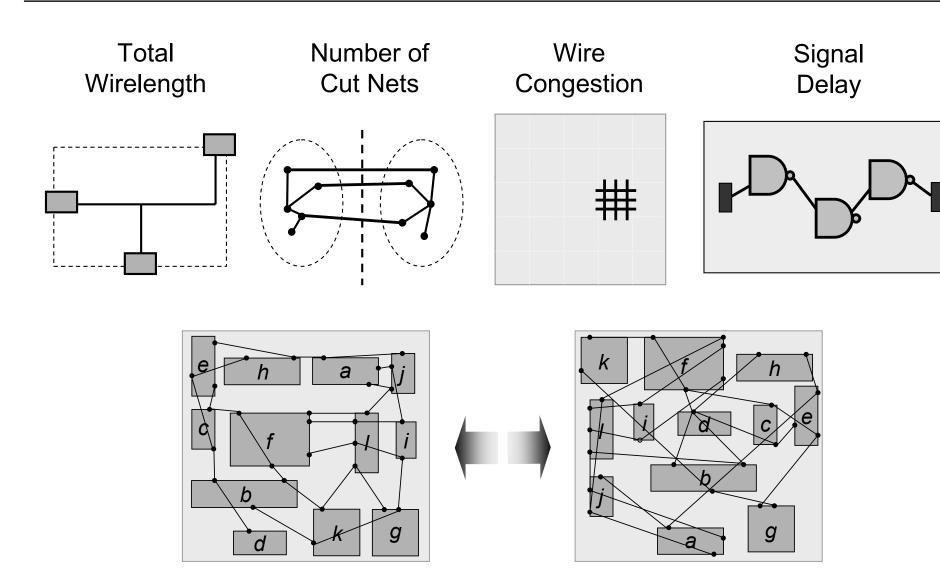
Global Placement

Detailed Placement

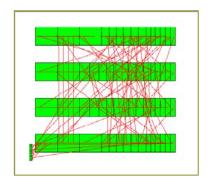


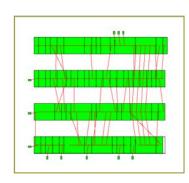


Placement Objective Functions



Good vs. Bad Placement





Bad placement causes routing congestion resulting in:

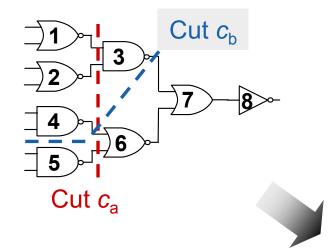
- Increases in circuit area (cost)and wiring
- Longer wires → more capacitance
 - Longer delay
 - Higher dynamic power dissipation

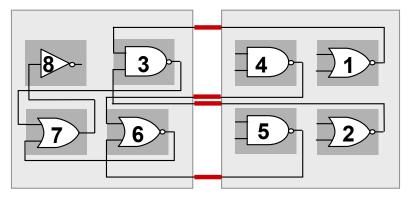
Good placement

- •Circuit area (cost) and wiring decreases
- Shorter wires → less capacitance
 - Shorter delay
 - Less dynamic power dissipation

Adapted from [Devadas'06]

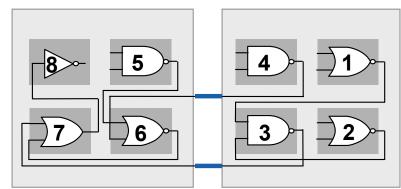
Partitioning





Cut c_a : four external connections

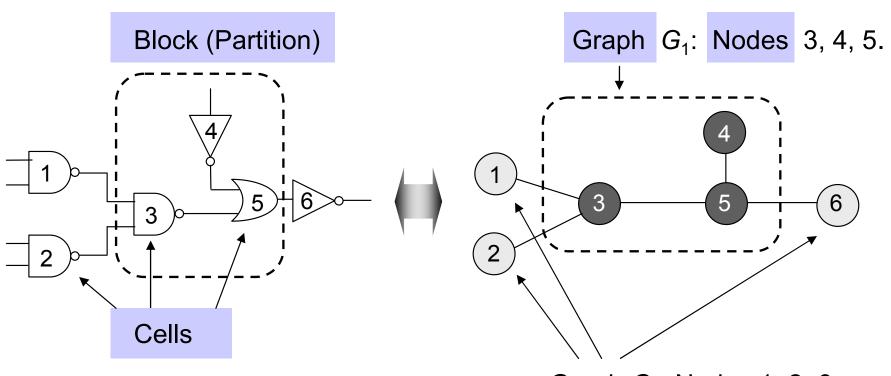
Block A



Block B

Cut c_b : two external connections

Partitioning Terminology



Graph *G*₂: Nodes 1, 2, 6.

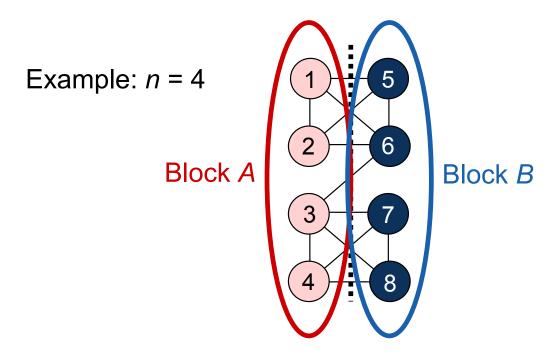
Collection of cut edges

Cut set: (1,3), (2,3), (5,6),

Kernighan-Lin (KL) Algorithm

Given: A graph with 2n nodes where each node has the same weight.

Goal: A partition (division) of the graph into two disjoint subsets A and B with minimum cut cost and |A| = |B| = n.



Cost D(v) of moving a node v

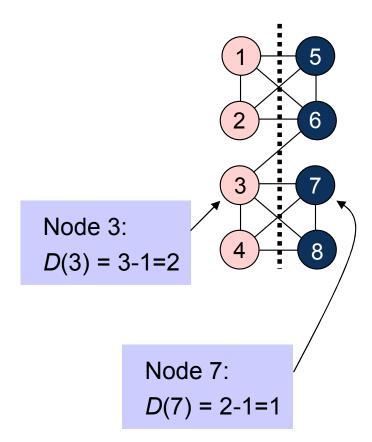
$$D(v) = |E_{c}(v)| - |E_{nc}(v)|$$
,

where

 $E_{\rm c}(v)$ is the set of v's incident edges that are cut by the cut line, and

 $E_{\rm nc}(v)$ is the set of v's incident edges that are not cut by the cut line.

High costs (D > 0) indicate that the node should move, while low costs (D < 0) indicate that the node should stay within the same partition.

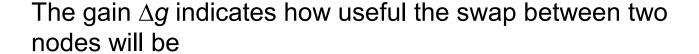


Gain of swapping a pair of nodes a und b

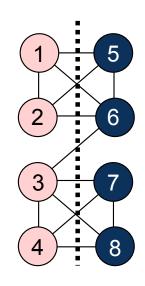
$$\Delta g = D(a) + D(b) - 2 \cdot c(a,b),$$

where

- D(a), D(b) are the respective costs of nodes a, b
- c(a,b) is the connection weight between a and b: If an edge exists between a and b, then c(a,b) = edge weight (here 1), otherwise, c(a,b) = 0.



The larger Δg , the more the total cut cost will be reduced



Gain of swapping a pair of nodes a und b

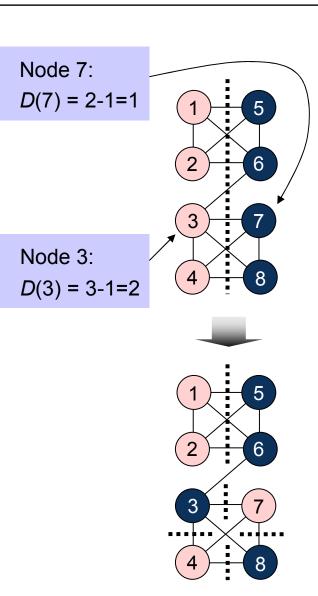
$$\Delta g = D(a) + D(b) - 2 \cdot c(a,b),$$

where

- D(a), D(b) are the respective costs of nodes a, b
- c(a,b) is the connection weight between a and b: If an edge exists between a and b, then c(a,b) = edge weight (here 1), otherwise, c(a,b) = 0.

$$\Delta g(3,7) = D(3) + D(7) - 2 \cdot c(a,b) = 2 + 1 - 2 = 1$$

=> Swapping nodes 3 and 7 would reduce the cut size by 1



Gain of swapping a pair of nodes a und b

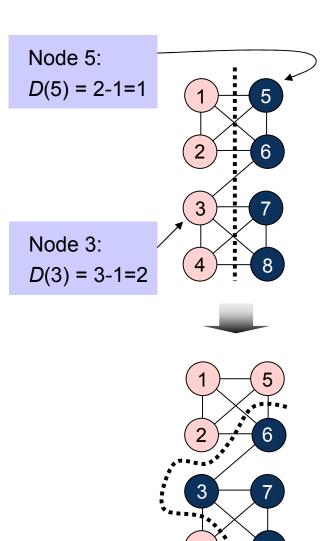
$$\Delta g = D(a) + D(b) - 2 \cdot c(a,b),$$

where

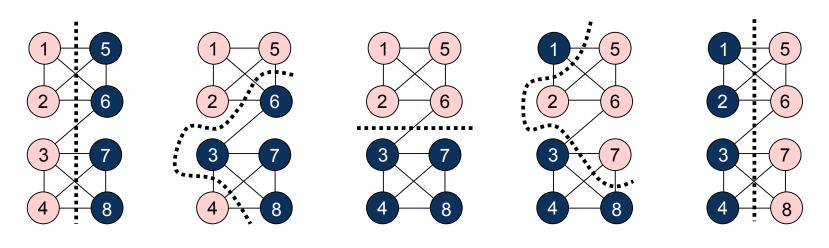
- D(a), D(b) are the respective costs of nodes a, b
- c(a,b) is the connection weight between a and b: If an edge exists between a and b, then c(a,b) = edge weight (here 1), otherwise, c(a,b) = 0.

$$\Delta g(3,5) = D(3) + D(5) - 2 \cdot c(a,b) = 2 + 1 - 0 = 3$$

=> Swapping nodes 3 and 5 would reduce the cut size by 3



Kernighan-Lin (KL) Algorithm Example



Cut cost: 9 Not fixed: 1,2,3,4,5,6,7,8 Cut cost: 6 Not fixed: 1,2,4,6,7,8 Cut cost: 1 Not fixed: 1,2,7,8 Cut cost: 7 Not fixed: 2,8

Cut cost: 9
Not fixed:



$$D(2) = 1$$
 $D(6) = 2$

$$D(3) = 2$$
 $D(7) = 1$
 $D(4) = 1$ $D(8) = 1$

$$\Delta g_1 = 2+1-0 = 3$$
 Swap (3,5)

$$G_1 = \Delta g_1 = 3$$

$$D(1) = -1$$
 $D(6) = 2$
 $D(2) = -1$ $D(7) = -1$
 $D(4) = 3$ $D(8) = -1$

$$\Delta g_2 = 3+2-0 = 5$$

Swap (4,6)
 $G_2 = G_1 + \Delta g_2 = 8$

$$D(1) = -3$$
 $D(7)=-3$
 $D(2) = -3$ $D(8)=-3$

$$\Delta g_3 = -3-3-0 = -6$$

Swap (1,7)
 $G_3 = G_2 + \Delta g_3 = 2$

$$D(2) = -1$$
 $D(8)=-1$

$$\Delta g_4 = -1-1-0 = -2$$

Swap (2,8)
 $G_4 = G_3 + \Delta g_4 = 0$

Kernighan-Lin (KL) Algorithm Example

$$D(1) = 1$$
 $D(5) = 1$

$$D(2) = 1$$
 $D(6) = 2$ $D(3) = 2$ $D(7) = 1$

$$D(4) = 1$$
 $D(8) = 1$

$$\Delta g_1 = 2+1-0 = 3$$

Swap (3,5)

$$G_1 = \Delta g_1 = 3$$

$$D(1) = -1$$
 $D(6) = 2$
 $D(2) = -1$ $D(7) = -1$

$$D(4) = 3$$
 $D(8)=-1$

$$\Delta g_2 = 3+2-0 = 5$$

Swap (4,6)

$$G_2 = G_1 + \Delta g_2 = 8$$

$$D(1) = -3$$
 $D(7)=-3$
 $D(2) = -3$ $D(8)=-3$

$$\Delta g_3 = -3-3-0 = -6$$

Swap (1,7)
$$G_3 = G_2 + \Delta g_3 = 2$$

$$D(2) = -1$$
 $D(8)=-1$

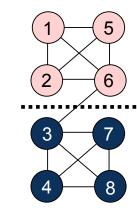
$$\Delta g_4 = -1-1-0 = -2$$

$$G_4 = G_3 + \Delta g_4 = 0$$

Maximum positive gain $G_m = 8$ with m = 2.

Since $G_m > 0$, the first m = 2 swaps (3,5) and (4,6) are executed.

Since $G_m > 0$, more passes are needed until $G_m \leq 0$.

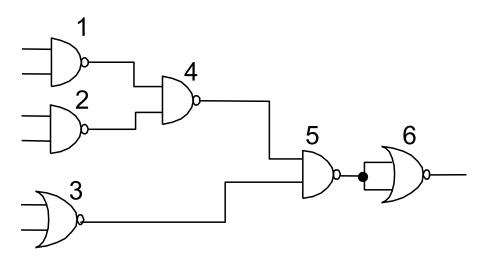


Min-Cut Placement

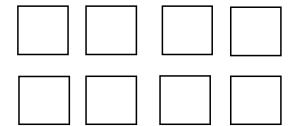
- Use partitioning algorithm (such as KL) to divide netlist into two regions
- Use partitioning algorithm to recursively divide the two partitions into two smaller regions (four regions total)
- Each cut heuristically minimizes the number of cut nets

Min-Cut Example

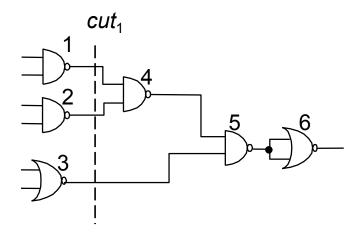
Given:



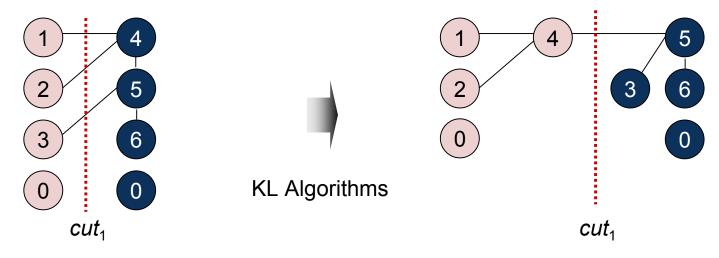
Task: 4 x 2 placement with minimum wirelength using alternative cutline directions and the KL algorithm



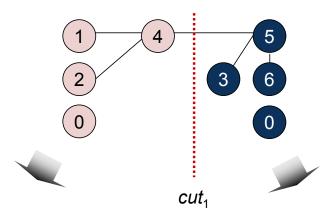
Min-Cut Example



Vertical cut cut_1 : $L=\{1,2,3\}$, $R=\{4,5,6\}$

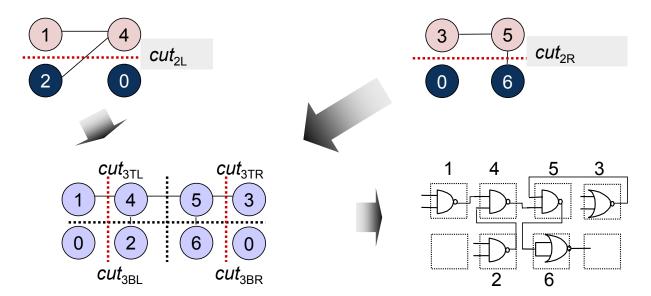


Min-Cut Example



Horizontal cut cut_{2L} : $T=\{1,4\}$, $B=\{2,0\}$

Horizontal cut cut_{2R} : $T=\{3,5\}$, $B=\{6,0\}$



Analytical Placement with Quadratic Placement Algorithm

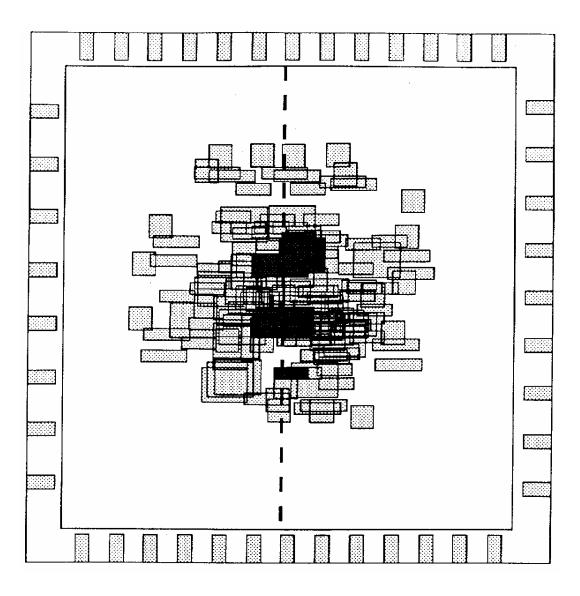
 Objective function is quadratic; sum of (weighted) squared Euclidean distance represents placement objective function

$$L(P) = \frac{1}{2} \sum_{i,j=1}^{n} c_{ij} \left(\left(x_i - x_j \right)^2 + \left(y_i - y_j \right)^2 \right)$$

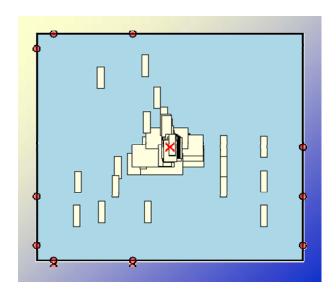
where *n* is the total number of cells, and c(i,j) is the connection cost between cells *i* and *j*.

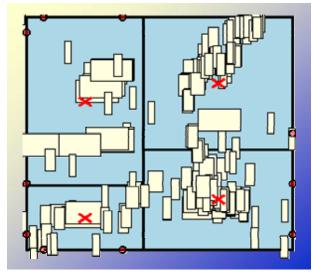
- Only two-point-connections
- Minimize objective function by equating its derivative to zero which reduces to solving a system of linear equations

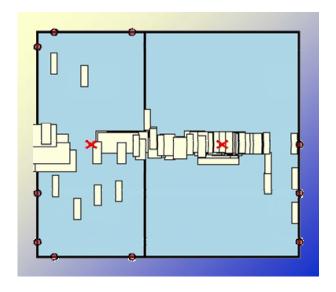
Minimizing Objective Function Clumps Cells Together

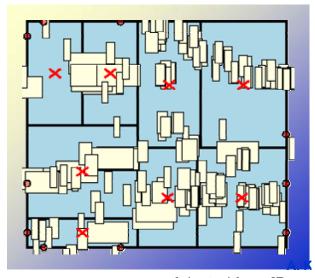


Using Partitioning to Pull Cells Apart



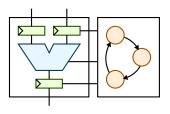






Adapted from [Devadas'06,Kahng'11]

Part 3: CAD Algorithms



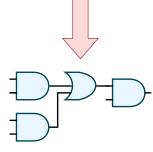
RTL to Logic Synthesis

$$x = a'bc + a'bc'$$

 $y = b'c' + ab' + ac$

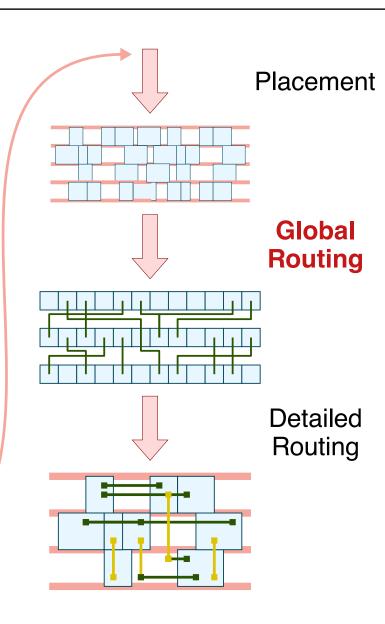
$$x = a'b$$

 $y = b'c' + ac$



Technology Independent Synthesis

Technology Dependent Synthesis

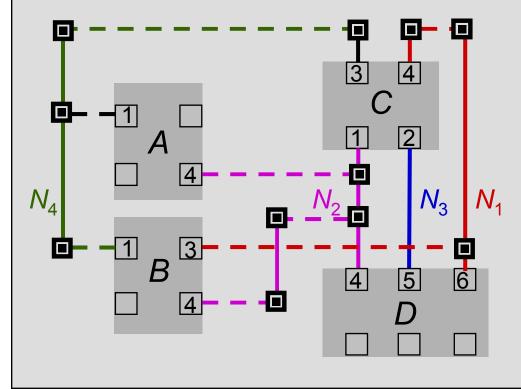


General Routing Problem

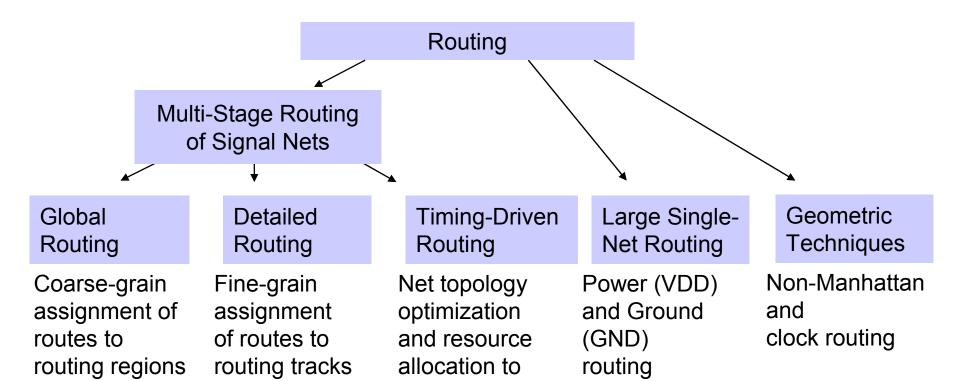
Netlist:

$$N_1 = \{C_4, D_6, B_3\}$$
 $N_2 = \{D_4, B_4, C_1, A_4\}$
 $N_3 = \{C_2, D_5\}$
 $N_4 = \{B_1, A_1, C_3\}$

Technology Information (Design Rules)



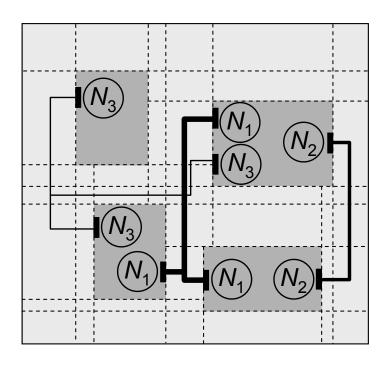
Routing Algorithm Taxonomy



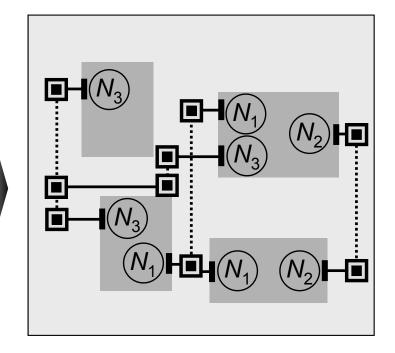
critical nets

Global vs. Detailed Routing

Global Routing



Detailed Routing

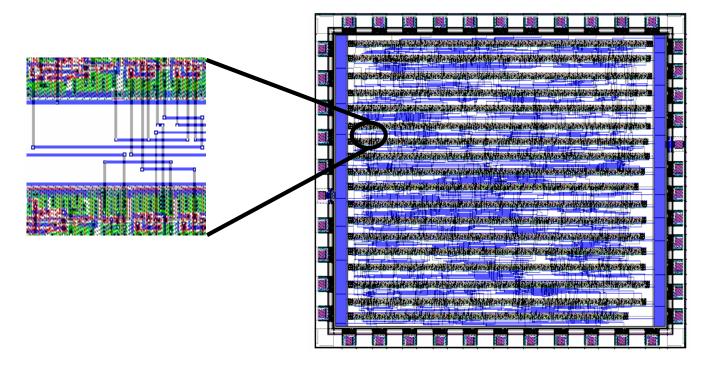


Horizontal Segment Vertical Segment

Terminology: Channel

Channel

Rectangular routing region with pins on two opposite sides

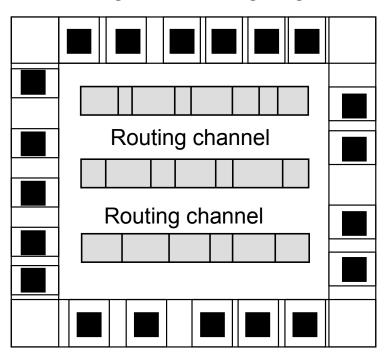


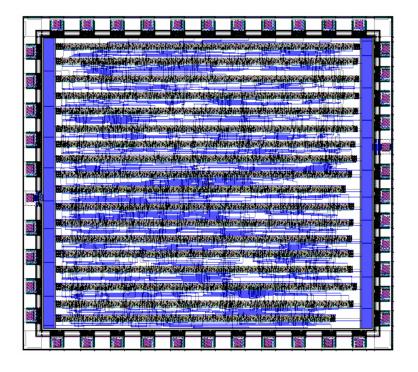
Standard cell layout (Two-layer routing)

Terminology: Channel

Channel

Rectangular routing region with pins on two opposite sides



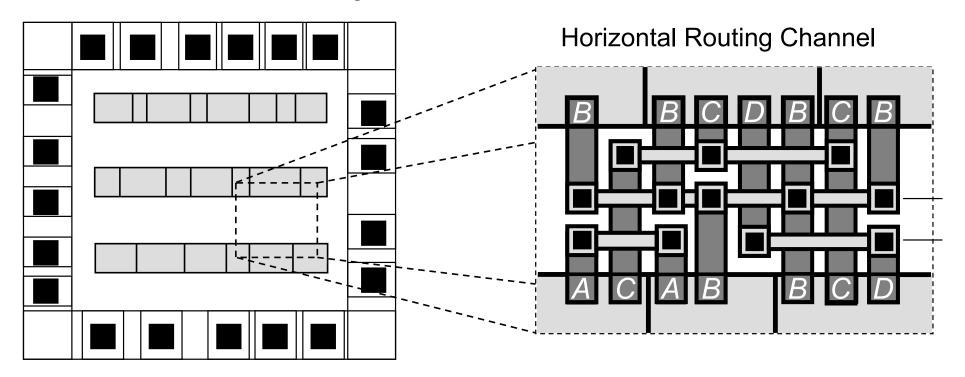


Standard cell layout (Two-layer routing)

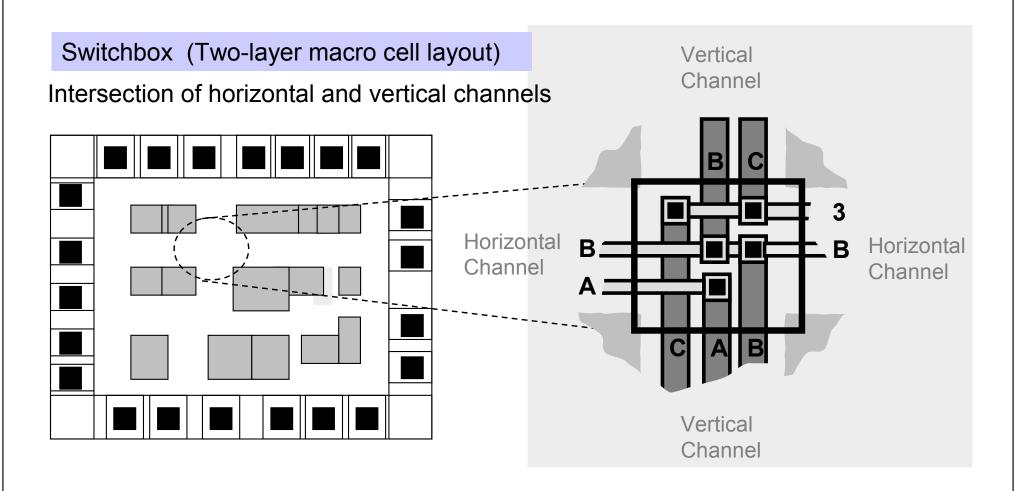
Terminology: Capacity

Capacity

Number of available routing tracks or columns



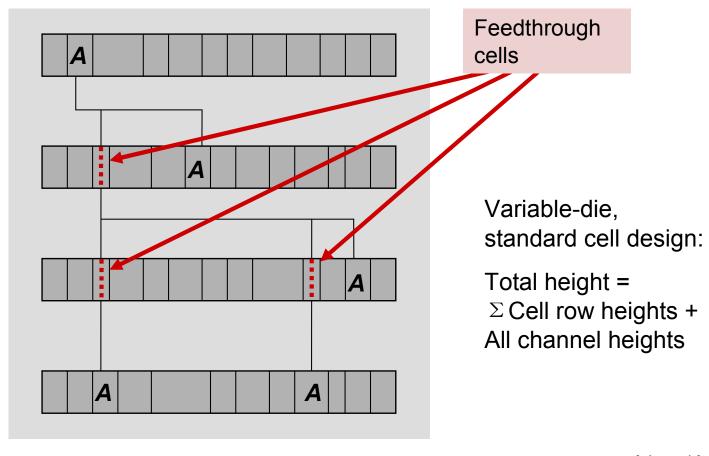
Terminology: Switchbox



Terminology: Feed-Through Cells

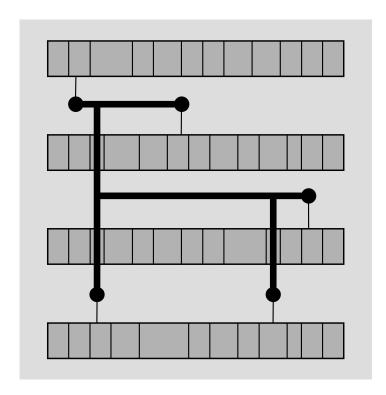
Standard-cell design

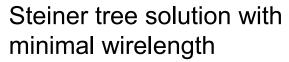
If number of metal layers is limited, feedthrough cells must be used to route across multiple cell rows

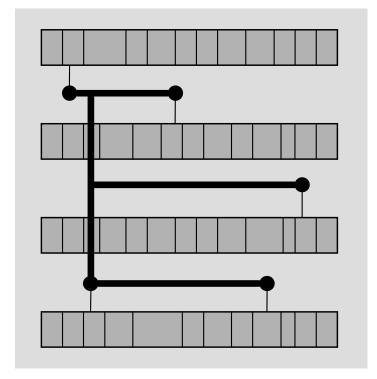


Optimizing Wirelength vs. Number of Feedthroughs

Standard-cell design

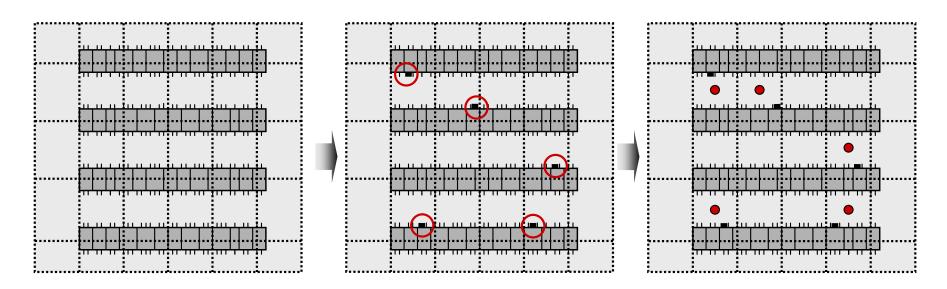






Steiner tree solution with fewest feedthrough cells

Rectilinear Routing

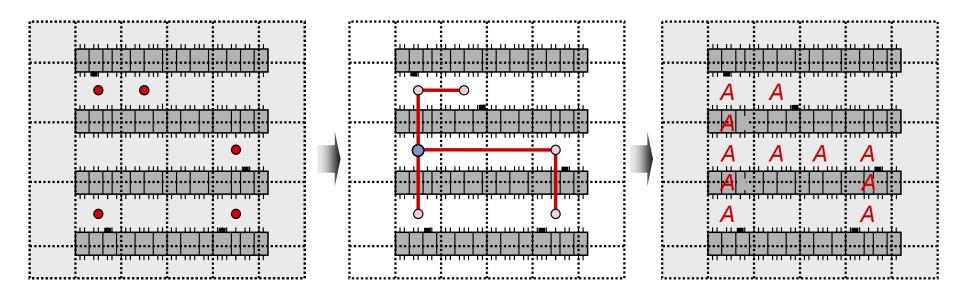


Defining routing regions

Pin connections

Pins assigned to grid cells

Rectilinear Routing



Pins assigned to grid cells

Rectilinear Steiner minimum tree (RSMT)

Assigned routing regions and feedthrough cells

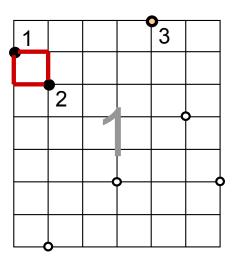
Heuristic Sequential Steiner Tree Algorithm

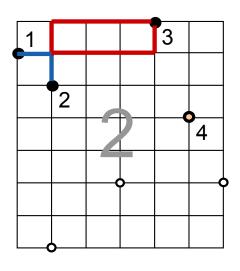
1. Find the closest (in terms of rectilinear distance) pin pair, construct their minimum bounding box (MBB)

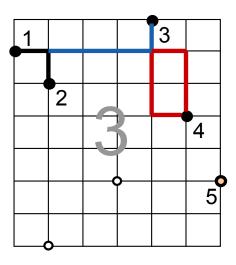
- 2. Find the closest point pair (p_{MBB}, p_C) between any point p_{MBB} on the MBB and p_C from the set of pins to consider
- 3. Construct the MBB of p_{MBB} and p_{C}

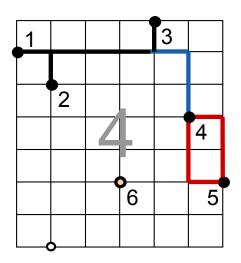
- 4. Add the *L*-shape that p_{MBB} lies on to *T* (deleting the other *L*-shape). If p_{MBB} is a pin, then add any *L*-shape of the MBB to *T*.
- 5. Goto step 2 until the set of pins to consider is empty

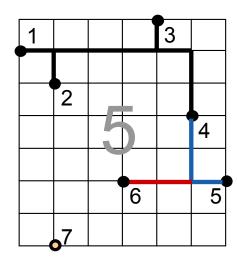
Heuristic Sequential Steiner Tree Example

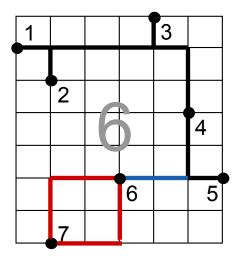




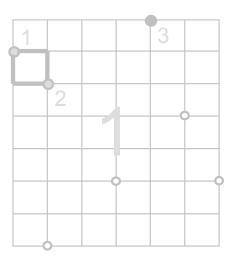


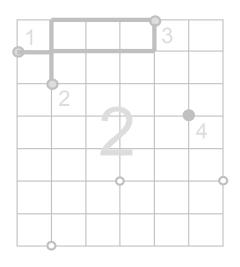


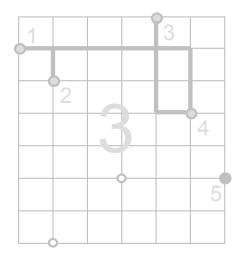


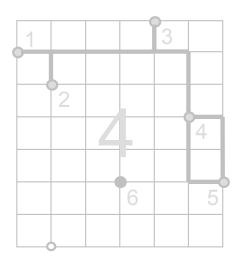


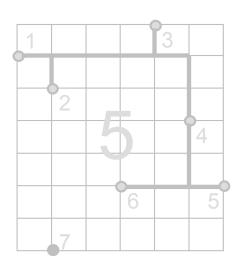
Heuristic Sequential Steiner Tree Example

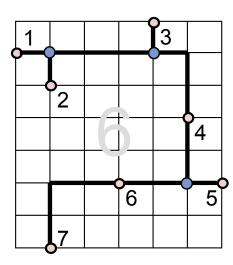




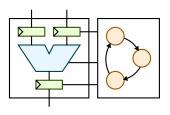








Part 3: CAD Algorithms



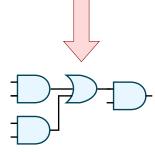
RTL to Logic Synthesis

$$x = a'bc + a'bc'$$

 $y = b'c' + ab' + ac$

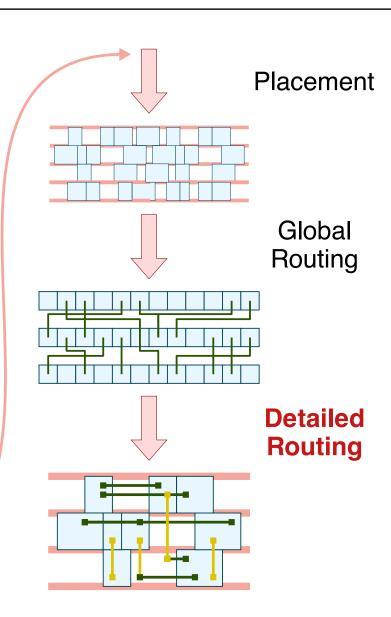
$$x = a'b$$

 $y = b'c' + ac$

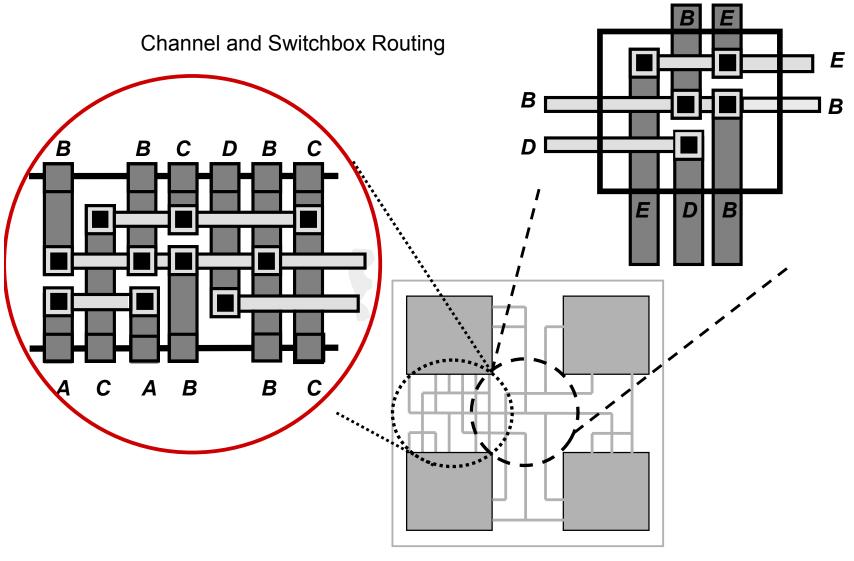


Technology Independent Synthesis

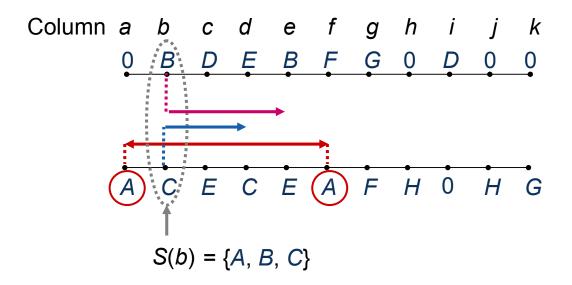
Technology Dependent Synthesis



Detailed Routing

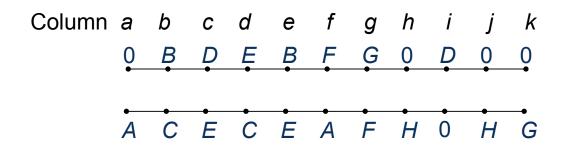


Horizontal Constraint Graphs



- Let S(col) denote the set of nets that pass through column col
- S(col) contains all nets that either (1) are connected to a pin in column color (2) have pin connections to both the left and right of col
- Since horizontal segments cannot overlap, each net in S(col) must be assigned to a different track in column col
- S(col) represents the lower bound on the number of tracks in colum col;
 lower bound of the channel height is given by maximum cardinality of any S(col)

Horizontal Constraint Graph Example



S(a) S(b) S(c) S(d) S(e) S(f) S(g) S(h) S(i) S(j) S(k) O B D E B F G O D O O A B C E C E A F H O H G

Focus on columns which are not subsets of any other column

$$S(a) = \{A\}$$

$$S(b) = \{A, B, C\}$$

$$S(c) = \{A,B,C,D,E\}$$

$$S(d) = \{A,B,C,D,E\}$$

$$S(e) = \{A, B, D, E\}$$

$$S(f) = \{A, D, F\}$$

$$S(g) = \{D, F, G\}$$

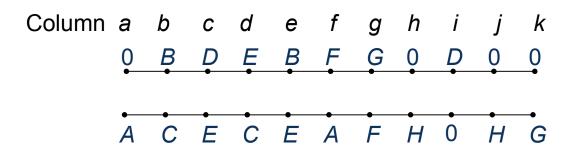
$$S(h) = \{D, G, H\}$$

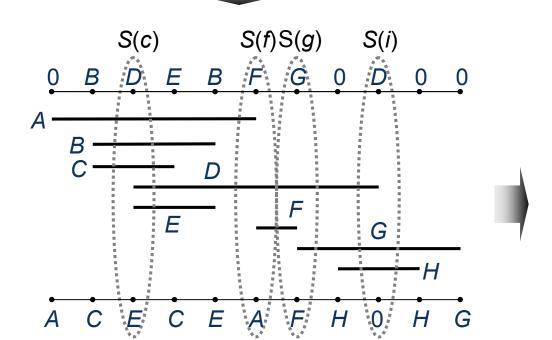
$$S(i) = \{D, G, H\}$$

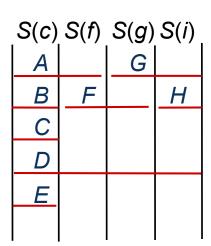
$$S(j) = \{G, H\}$$

$$S(k) = \{G\}$$

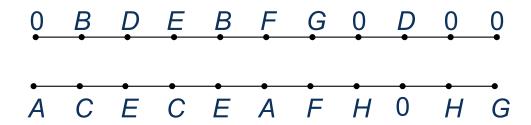
Horizontal Constraint Graph Example

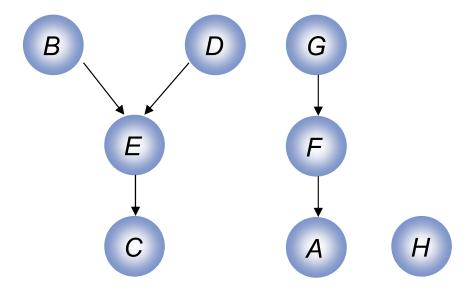


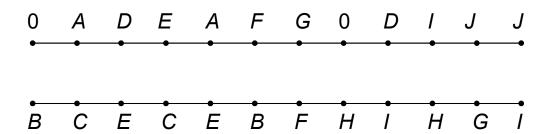




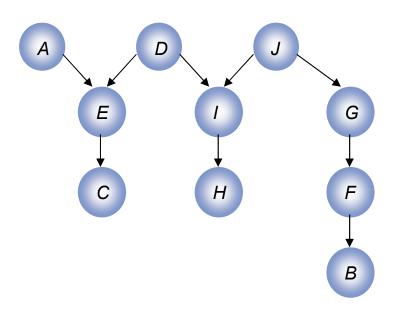
Vertical Constraint Graphs

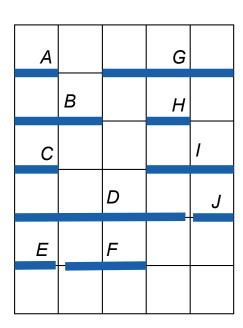


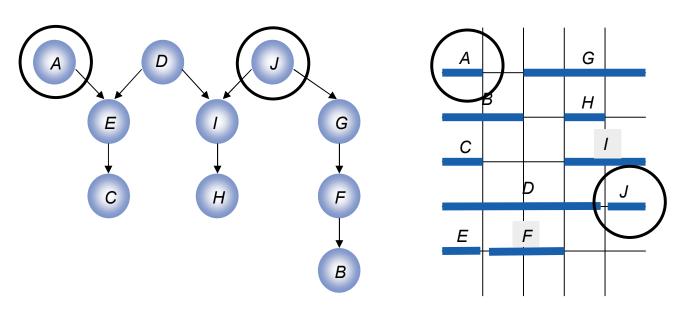




1. Generate VCG and zone representation



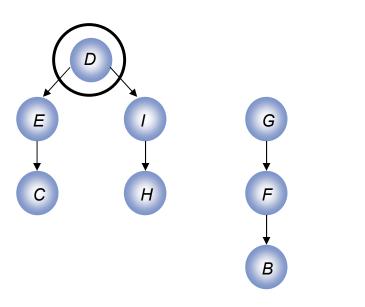


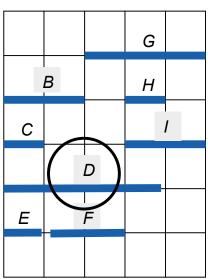


- 2. Consider next track
- 3. Find left-to-right ordering of all unassigned nets If *curr_net* has no parents and does not cause conflicts on *curr_track* assign *curr_net*

curr_track = 1: Net A Net J

4. Delete placed nets (A, J) in VCG and zone representation

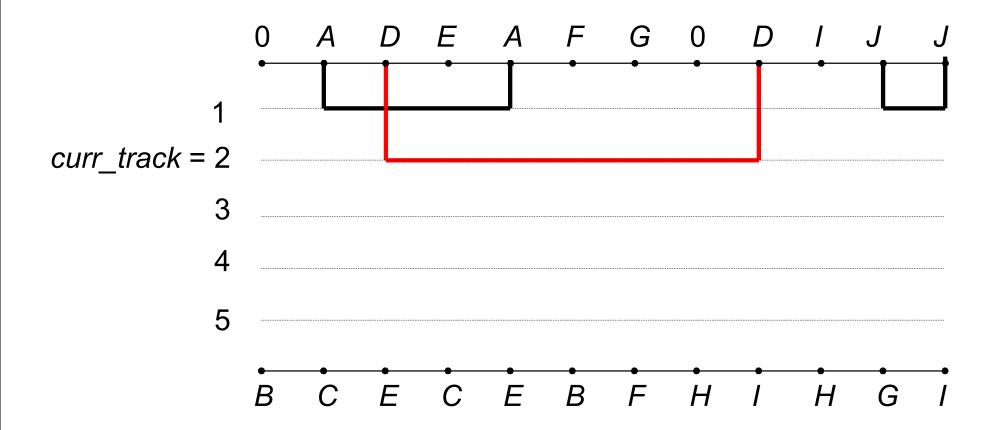


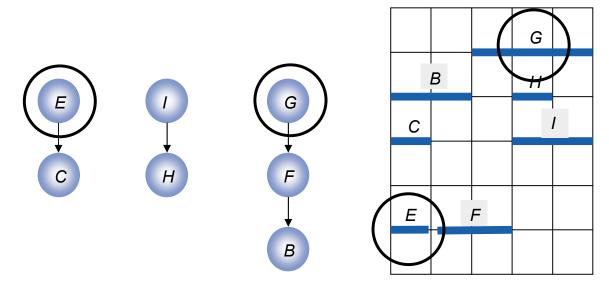


- 2. Consider next track
- Find left-to-right ordering of all unassigned nets
 If curr_net has no parents and does not cause conflicts on curr_track assign curr_net

curr_track = 2: Net D

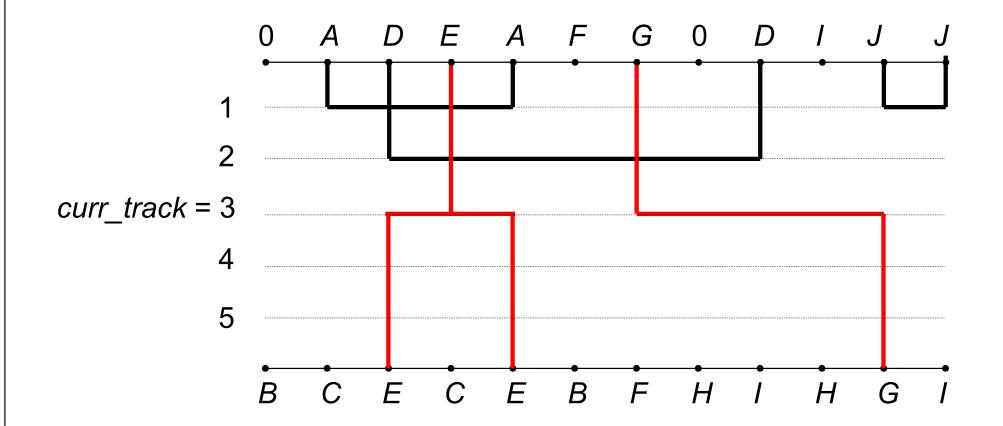
4. Delete placed nets (D) in VCG and zone representation

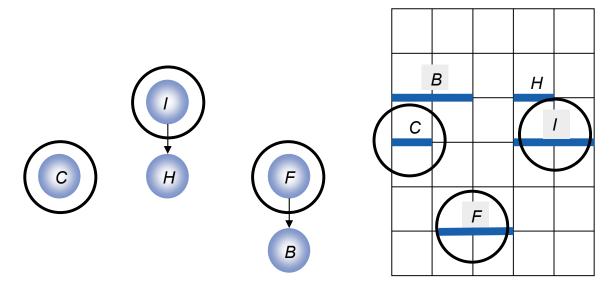




- Consider next track
- 3. Find left-to-right ordering of all unassigned nets If *curr_net* has no parents and does not cause conflicts on *curr_track* assign *curr_net*

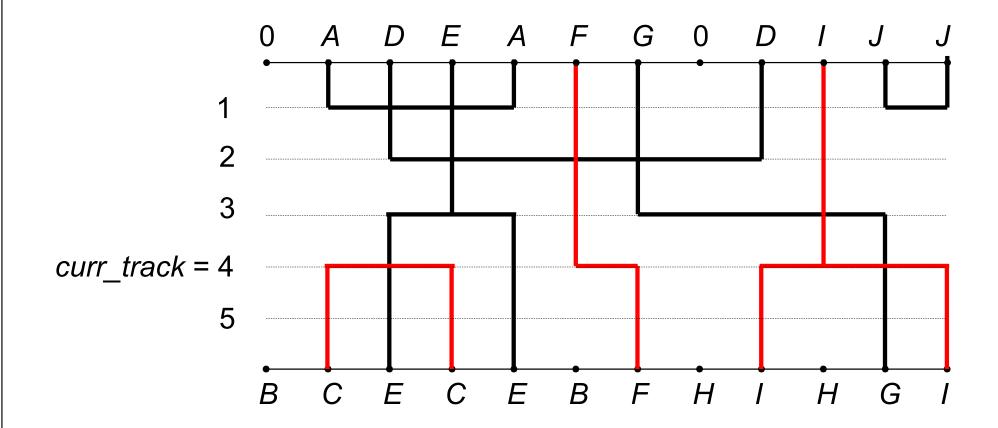
4. Delete placed nets (*E*, *G*) in VCG and zone representation

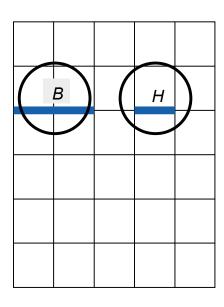




- Consider next track
- Find left-to-right ordering of all unassigned nets
 If curr_net has no parents and does not cause conflicts on curr_track assign curr_net

4. Delete placed nets (C, F, I) in VCG and zone representation

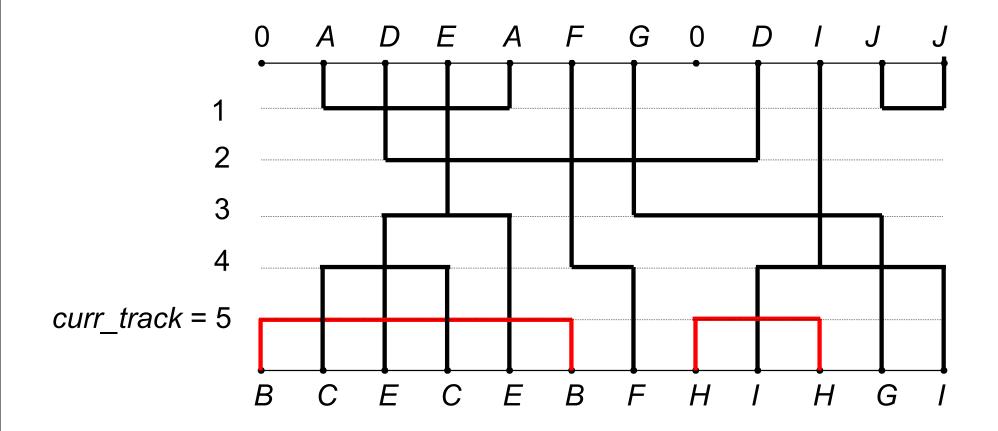




- 2. Consider next track
- Find left-to-right ordering of all unassigned nets
 If curr_net has no parents and does not cause conflicts on curr_track assign curr_net

curr_track = 5: Net B Net H

4. Delete placed nets (B, H) in VCG and zone representation



Acknowledgments

- ► [Devadas'06] S. Devadas, "VLSI CAD Flow: Logic Synthesis, Placement, and Routing," MIT 6.375 Complex Digital Systems Guest Lecture Slides, 2006.
- [Kahng'11] A.B. Kahng, J. Liening, I.L. Markov, and J. Hu. Companion Slides for "VLSI Physical Design: From Graph Partitioning to Timing Closure," Springer 2011.