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The first lab assignment is a warmup lab where you will use a standard-cell ASIC toolflow to quan-
titatively analyze the area, energy, and performance of various integer multiplier designs. You will
push three given baseline designs through the ASIC toolflow: a fixed-latency iterative design that
always takes the same number of cycles, a variable-latency iterative design that exploits properties
of the input operands to reduce the execution time, and a simple single-cycle design. The alternative
design is a pipelined integer multiplier that is parameterized by the number of pipeline stages. You
are required to implement both a register-transfer-level (RTL) model of the alternative design, verify
the design using an effective testing strategy, push all designs through the ASIC toolflow, and per-
form an evaluation comparing the various implementations. Your experience in this lab assignment
will create a solid foundation for completing the rest of the lab assignments and the five-week design
project.

This handout assumes that you have read and understand the course tutorials and the lab assignment
logistics document. To get started, login to an ecelinux machine, source the setup script, and clone
your lab group’s remote repository from GitHub:

% source setup-ece5745.sh
% mkdir -p ${HOME}/ece5745
% cd ${HOME}/ece5745
% git clone git@github.com:cornell-ece5745/lab1-groupXX.git

where XX is your group number. You should never fork your lab group’s remote repository! If you
need to work in isolation then use a branch within your lab group’s remote repository. If you have
already cloned your lab group’s remote repository, then use git pull to ensure you have any recent
updates before running all of the tests. You can run all of the tests in the lab like this:

% cd ${HOME}/ece5745/lab1-groupXX
% git pull --rebase
% mkdir -p sim/build
% cd sim/build
% pytest ../lab1_imul

All of the tests should pass except for the tests related to the multipliers you will be implementing in
this lab. For this lab you will be working in the lab1_imul subproject which includes the following
files in the sim subdirectory:

• IntMulFL.py – FL multiplier

• IntMulFixed.v – Verilog RTL fixed-latency multiplier
• IntMulFixed.py – Wrapper to choose which RTL language

• IntMulVarCalcShamt.v – Verilog RTL model to calculate shift amount
• IntMulVarCalcShamt.py – Wrapper to choose which RTL language
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• IntMulVar.v – Verilog RTL variable-latency multiplier
• IntMulVar.py – Wrapper to choose which RTL language

• IntMulScycle.v – Verilog RTL single-cycle multiplier
• IntMulScycle.py – Wrapper to choose which RTL language

• IntMulNstage.v – Verilog RTL pipelined multiplier
• IntMulNstage.py – Wrapper to choose which RTL language

• imul-sim – Multiplier simulator for evalution
• __init__.py – Package setup

• test/IntMulFL_test.py – FL multiplier unit tests
• test/IntMulScycle_test.py – RTL single-cycle multiplier unit tests
• test/IntMulFixed_test.py – RTL fixed-latency multiplier unit tests
• test/IntMulVarCalcShamt_test.py – RTL calculate shift amount unit tests
• test/IntMulVar_test.py – RTL variable-latency multiplier unit tests
• test/IntMulNstage_test.py – RTL pipelined multiplier unit tests
• test/imul_sim_test.py – Test to make sure multiplier simulator works
• test/__init__.py – Test package setup

1. Introduction

In ECE 4750, you learned how to evaluate baseline and alternative designs according to several key
metrics: execution time (in cycles), area, energy, and cycle time. Using RTL modeling, we were able to
quantitatively measure the execution time (in cycles) for a given input dataset for each design, but we
relied on qualitative estimates to analyze the the area, energy, and cycle time of each design. In this
lab, we will learn how to use a standard-cell ASIC toolflow to quantitatively measure the area, energy,
and cycle time of a design; we can then combine these measurements with our understanding of the
cycle-level performance of each design to conduct a much more detailed design-space exploration.

We have provided you with a functional-level model of an integer multiplier. You can find this
functional-level (FL) implementation in IntMulFL.py and the associated unit tests in test/IntMulFL_test.py.
This implementation verifies the functionality and uses a higher-level modeling style compared to
register-transfer-level (RTL) modeling. The interface for the FL model and indeed for all of the inte-
ger multiplier designs is similar in that they accept two 32-bit numbers and produce a single 32-bit
multiplication result. All implementations should treat the input operands and the result as two’s
complement numbers and thus should be able to handle both signed and unsigned multiplication.
The FL model is a simple Python function and the RTL model uses port-based interfaces and the
val/rdy micro-protocol. By leveraging the val/rdy micro-protocol, another module would be able
to send request messages to the multiplier and never explicitly be concerned with how many cycles
the implementation takes to execute a multiply transaction and return the response message.

2. Baseline Design

There are three baseline designs for this lab assignment: a fixed-latency iterative integer multiplier,
a variable-latency iterative multiplier, and a simple single-cycle multiplier. The RTL models of each
design are provided for you. All baseline designs use the same interface shown in Figure 1.

2.1. Fixed-Latency Iterative Integer Multiplier

The fixed-latency iterative multiplier will always take approximately 32 cycles. Figure 2 illustrates
the fixed-latency iterative multiplication algorithm using “pseudocode” which is really executable
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Figure 1: RTL Integer Multiplier Interface –
RTL model uses port-based interfaces leveraging
val/rdy micro-protocol.

1 def imul_fixed_algo( a, b ):
2

3 result = Bits( 32, 0 )
4 for i in range(32):
5 if b[0] == 1:
6 result += a
7 a = a << 1
8 b = b >> 1
9

10 return result

Figure 2: Fixed-Latency Iterative Multiplication Algo-
rithm – Assumes a and b are 32-bit Bits objects. Always
uses 32 shifts and subtractions to calculate the partial-
products over time. This is executable Python code.

Python code. Each iteration we check the least significant bit of the b operand; if this bit is zero then
we shift the b operand to right and the a operand to the left, but if this bit is one then we add a to the
result before shifting. Each iteration is essentially calculating a partial product for the multiplication.
Note that we say “approximately” because there may be a few extra cycles of overhead in handling
the val/rdy micro-protocol (although a more optimized design can remove this overhead).

The fixed-latency iterative multiplier RTL model uses a control/datapath split. The datapath for
the fixed-latency design is shown in Figure 3. The blue signals represent control/status signals for
communicating between the datapath and the control unit. The datapath model uses a structural
design style by instantiating a child module for each of the blocks in the datapath diagram. The
control unit for the fixed-latency design uses the simple finite-state-machine shown in Figure 4. The
IDLE state is responsible for consuming the message from the input interface and placing the input
operands into the input registers; the CALC state is responsible for iteratively using adds and shifts
to calculate the multiplication; and the DONE state is responsible for sending the message out the
output interface. Note that if you implement the FSM exactly as shown each multiply should take 35
cycles: one for the IDLE state, 32 for iterative calculation, one cycle to realize the calculation is done,
and one cycle for the DONE state. The extra cycle to realize the calculation is done is because we are
not using Mealy transitions from the CALC to DONE states. We need to wait for the counter to reach
32 and then we move into the idle state. The control unit is structured into three parts: a sequential
concurrent block for just the state element, a combinational concurrent block for state transitions, and
a combinational concurrent block for state outputs. The Verilog code for the fixed-latency iterative
multiplier RTL model is in IntMulFixed.v.

2.2. Variable-Latency Iterative Integer Multiplier

The fixed-latency iterative integer multiplier will always take 35 cycles to compute the result. While
it is possible to optimize away the cycle to realize the calculation is done and to eliminate the IDLE/-
DONE states, fundamentally this algorithm is limited by the 32 cycles required for the iterative calcu-
lation. The variable-latency iterative multiplier takes advantage of the structure in some pairs of in-
put operands to improve performance and energy efficiency. Figure 5 illustrates the variable-latency
iterative multiplication algorithm using “pseudocode”. If the b operand has many consecutive ze-
ros we don’t need to shift one bit per cycle; instead we can shift the B register multiple bits in one
step and directly jump to the next required addition. The calc_shamt function calculates the shift
amount based on the number of trailing zeros in the b operand. Various different implementations
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Figure 3: Datapath for Fixed-Latency Iterative Integer Mul-
tiplier – All datpath components are 32-bits wide. Shifters
are constant one-bit shifters. We use registered inputs with a
minimal of logic before the registers.

IDLE

CALC

DONE

!resp_rdy

!req_val

req_val

resp_rdy

counter = 32

(counter < 32)
&& (b[0] == 1) 

/add,shift

(counter < 32)
&& (b[0] == 0)
/shift

Figure 4: Control FSM for Fixed-
Latency Iterative Integer Multiplier –
Hybrid Moore/Mealy FSM with Mealy
transitions in the CALC state.

of calc_shamt are possible: considering more bits will improve the performance but likely increase
area and energy.

The variable-latency iterative multiplier RTL model is very similar to the fixed-latency RTL model
with a couple key differences. The datapath for the variable-latency design is shown in Figure 6.
Notice that we have added a new model that takes the b operand and input and calculates the vari-
able shift amount for both the left and right shifters. The Verilog code for this new model is in
IntMulVarCalcShamt.v. Refactoring this logic into a separate model enables unit testing the logic
before integrating it into the overall design. The control unit for the variable latency design uses the
simple finite-state-machine shown in Figure 7. The only difference from the fixed-latency design is
that we finish the calculation when the b operand is zero. The Verilog code for the variable-latency
iterative multiplier RTL model is in IntMulVar.v respectively.

2.3. Single-Cycle Integer Multiplier

While the iterative multipliers will likely require minimal area, they also require many cycles to
calculate each result. As a point of comparison, we will also consider a simple single-cycle inte-
ger multiplier. Figure 8 shows the single-cycle RTL model. We use registered inputs for both the
operands and the valid bit. If the response interface is not ready, then we stall the multiplier by
disabling the register enable signals and combinationally propagating the response ready signal to
the request ready signal. For the actual multiplier we simply use the * operator; we will rely on
the ASIC toolflow to choose the most appropriate multiplication hardware. The Verilog code for the
single-cycle multiplier RTL model is in IntMulScycle.v.
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3. Alternative Design

For your alternative design, you should implement a pipelined integer multiplier with the same
interfaces used in the baseline designs. You should implement an RTL model that is parameterized
by the number of pipeline stages; you can assume that the number of stages will be either 1, 2, 4, or
8, although you can also support 16 and 32 stages if you like. As discussed in the tutorials, in this
course we will adopt the general policy of using registered inputs for larger blocks, so your pipelined
multiplier should start with a set of pipeline registers.

The pipelined integer multiplier RTL model should use a child model that implements a single “par-
tial product step” of the fixed-latency iterative multiplication algorithm. Each partial product step
would involve three inputs: one for a, b, and result and three outputs also for a, b, and result.
Each partial product step will perform two shifts, an addition, and then mux the result of the addi-
tion conditionally based on the least-significant bit of the b input. As always, you should unit test the
partial product step model, and potentially even build a composition of a few steps for integration
testing. Once you are confident in your step model, implement the parameterized RTL model by
using elaboration to insert the pipeline registers between the steps. Your pipelined multiplier should
always include a total of 32 steps. What changes is just where you put the pipeline registers. If done
correctly, your pipelined multiplier should be able to sustain one multiply transaction per cycle.

Note that there are many optimizations you might want to try that may lead to higher quality hard-
ware; you should feel free to explore different approaches if you like. For example, you might want
to consider exploring the difference between using structural components within each partial prod-
uct step vs. doing a flat design without any additional hierarchy within each partial product step.
Or you may want to consider exploring the difference between an inelastic vs. elastic pipeline. In an
inelastic pipeline, the entire pipeline stalls if the response interface is not ready. In an elsatic pipeline,
the pipeline can continue flowing even if the response is not ready as long as there are “bubbles” in
the pipeline that can be eliminated. Or possibly adding a queue at the response interface can enable
better decoupling. Note if students want to explore more complicated multiplier microarchitectures,
they should first implement a muliplier using a sequence of partial product steps. Once this first al-
ternative design is working and evaluated, then students can implement another, more complicated
alternative design in a different file with different tests.

4. Testing Strategy

We have provided you with all of the unit tests for the integer multipliers, although you will need
to add your own test scripts for any new models you create. You are also certainly welcome to
add more tests for your alternative design if you would like. Most of the unit tests are defined in
test/IntMulFL_test.py; the other test scripts reuse these unit tests as much as possible. The fol-
lowing commands illustrate how to run all of the tests for the entire project, how to run just the
tests for this lab, and how to run just the tests for the FL model, and fixed-latency RTL model. You
likely want a test that verifies your pipelined N-stage multiplier is in fact pipelining the multiplica-
tions with a cycle-accurate test. Note, you may have to create new testing modules to validate cycle
accuracy within a test.

% cd ${HOME}/ece5745/lab1-groupXX/sim/build
% pytest ..
% pytest ../lab1_imul
% pytest ../lab1_imul/test/IntMulFL_test.py --verbose
% pytest ../lab1_imul/test/IntMulFixed_test.py --verbose
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Once your alternative design passes all of the provided tests, then you should verify that your RTL
model can be successfully translated using the following command:

% cd ${HOME}/ece5745/lab1-groupXX/sim/build
% pytest ../lab1_imul/test/IntMulNstage_test.py --test-verilog

5. Evaluation

Once you have verified the functionality of your alternative design, you should then use the provided
simulator to evaluate the cycle-level performance of the various multiplier designs. You can run the
simulator for the first baseline design like this:

% cd ${HOME}/ece5745/lab1-groupXX/sim/build
% ../lab1_imul/imul-sim --impl fixed --input small --stats

The simulator will display the total number of cycles to execute the specified input dataset. You
should study the line traces (with the --trace option) and possibly the waveforms (with the --dump-vcd
option) to understand the reason why each design performs as it does on the various patterns. For
your pipelined multiplier, you can use the --nstages option to set the number of pipeline stages. Be
careful to factor out the pipeline startup overhead for your pipelined multipliers for a fair compari-
son.

Once you have explored the cycle-level performance of the various multiplier designs, you should
push the RTL models through the standard-cell ASIC toolflow to quantify the area, energy, and
timing of each design. We would like you to push the following designs through the flow:

• Fixed-latency iterative multiplier
• Variable-latency iterative multiplier
• Single-cycle multiplier
• Pipelined multiplier with one stage
• Pipelined multiplier with two stages
• Pipelined multiplier with four stages
• Pipelined multiplier with eight stages

For each design we would like to analyze the power/energy when executing three specific input
datasets: small (small random numbers), large (large random numbers), and sparse (higher prob-
ability of zero bits in the input operands). You can generate the Verilog and VCD files for the fixed
latency multiplier using the simulator like this:

% cd ${HOME}/ece5745/lab1-groupXX/sim/build
% ../lab1_imul/imul-sim --impl fixed --input small --translate --dump-vtb
% ../lab1_imul/imul-sim --impl fixed --input large --translate --dump-vtb
% ../lab1_imul/imul-sim --impl fixed --input sparse --translate --dump-vtb

This will generate the following key files:

• IntMulFixed__pickled.v
• IntMulFixed_imul-fixed-small_tb.v
• IntMulFixed_imul-fixed-small_tb.v.cases
• IntMulFixed_imul-fixed-large_tb.v
• IntMulFixed_imul-fixed-large_tb.v.cases
• IntMulFixed_imul-fixed-sparse_tb.v
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• IntMulFixed_imul-fixed-sparse_tb.v.cases

A standard-cell ASIC flow can involve many different parameters and a complex sequence of steps.
We will be using a mflowgen to automate this process. Each block you wish to push through the
standard-cell ASIC flow will require an appropriate flow.py file to specify parameters and the steps
you want to use in the flow. We have provided you seven flow.py files that correspond to the seven
blocks you will need to push through the flow. Each flow.py file is in its own subdirectory in the
asic directory.

• lab1-fixed: Flow for the fixed-latency iterative multiplier
• lab1-var: Flow for the variable-latency iterative multiplier
• lab1-scycle: Flow for the single-cycle multiplier
• lab1-1stage: Flow for the pipelined multiplier with one stage
• lab1-2stage: Flow for the pipelined multiplier with two stages
• lab1-4stage: Flow for the pipelined multiplier with four stages
• lab1-8stage: Flow for the pipelined multiplier with eight stages

You can configure the standard-cell ASIC flow for the fixed-latency iterative multiplier like this:

% cd ${HOME}/ece5745/lab1-groupXX/asic
% mkdir build-fixed
% cd build-fixed
% mflowgen run --design ../lab1-fixed
% make list

- 0 : build-info
- 1 : ece5745-block-gather
- 2 : freepdk-45nm
- 3 : brg-rtl-4-state-vcssim
- 4 : brg-synopsys-dc-synthesis
- 5 : brg-cadence-innovus-init
- 6 : post-synth-gate-level-simulation
- 7 : brg-cadence-innovus-blocksetup
- 8 : post-synth-power-analysis
- 9 : brg-cadence-innovus-pnr
- 10 : brg-cadence-innovus-signoff
- 11 : post-pnr-gate-level-simulation
- 12 : post-pnr-power-analysis
- 13 : brg-flow-summary

Notice that we use a build directory for pushing a block through the flow. This keeps all of the files
associated with each block separate. You can create many build directories, even for the same block
as you experiment with different parameters. Notice that the flow has 14 steps. You can run these
steps in sequence like this:

% cd ${HOME}/ece5745/lab1-groupXX/asic/build-fixed
% make brg-rtl-4-state-vcssim
% make brg-synopsys-dc-synthesis
% make post-synth-gate-level-simulation
% make brg-cadence-innovus-pnr
% make post-pnr-gate-level-simulation
% make brg-flow-summary
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You can also just use the step number instead of the full step name. If you want to change a parameter
(e.g., change the target clock period) edit the corresponding flow.py file, rerun mflowgen, and then
clean all steps like this:

% cd ${HOME}/ece5745/lab1-groupXX/asic/build-fixed
% mflowgen run --design ../lab1-fixed
% make clean-all

If you clean your build directory it will remove all results from the previous run, so if you want to
keep previous results then make a new build directory. Notice that if you do not specify a step, then
mflowgen will run all steps. Having multiple runs on hand can help you explore the design space
better more efficiently since you can refer to reports and design parameters when comparing with
other runs.

For the baseline iterative designs you can set the clock constraint to be 0.6 ns, and for the baseline
single-cycle design you can set the clock constraint to be 1.5 ns. For your pipelined multiplier you
will need to experiment to find a good clock constraint. If you have significant positive slack you are
not pushing the tools hard enough. If you have negative slack you are pushing the tools too hard.
Remember that every design must meet timing after place-and-route!

Be sure to look at the reports from each run to analyze your results, especially the timing and area
reports. Also confirm that your results seem reasonable in case part of the design was aborted by the
standard-cell ASIC flow since it can be difficult to see when using the automated scripts. In addi-
tion to tables and bar plots, you should include several energy vs. performance plots similar to what
we use in lecture to compare the various designs. We recommend having one energy vs. perfor-
mance plot per input dataset; so plot the results for all of the different microarchitectures executing
this dataset on one plot, and then create another plot for a different input dataset. These energy
vs. performance plots should enable you to provide deep insight into the various trade-offs in the
evaluation section of your report.

6. Report

The Lab Assignment Logistics document provides general details about the requirements for the report.
You must actually read this document to ensure you know what goes in your report and how to
format it.

Alternative Design Section – In the alternative design section of your report you should briefly dis-
cuss how you created a parameterized pipelined multiplier. Be sure to include a diagram illustrating
your design. If you also implemented a more complicated multiplier microarchitecture, then you
must describe it in the alternative design section.

Evaluation Section – In addition to tables and bar plots, you should include several energy vs. per-
formance plots similar to what we use in lecture to compare the various designs. We recommend
having one energy vs. performance plot per input dataset; so plot the results for all of the different
microarchitectures executing this dataset on one plot, and then create another plot for a different in-
put dataset. These energy vs. performance plots should enable you to provide deep insight into the
various trade-offs in the evaluation section of your report. If you also implemented a more compli-
cated multiplier microarchitecture, then you must evaluate it in the alternative design section. You
must include at least one amoeba plot of your alternative design!
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1 def imul_var_algo( a, b ):
2

3 result = Bits( 32, 0 )
4 while b != 0:
5 if b[0] == 1:
6 result += a
7 shamt = calc_shamt( b )
8 a = a << shamt
9 b = b >> shamt

10

11 return result

Figure 5: Variable-Latency Iterative Multiplication Al-
gorithm – Assumes a and b are 32-bit Bits objects. Shifts
by more than one to skip over sequences of zeros in the b
operand. Various different calc_shift functions are pos-
sible. This is executable Python code.
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Figure 6: Datapath for Variable-Latency Iterative Integer
Multiplier – All datpath components are 32-bits wide except
for the shift amount signal to the variable shifters.
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Figure 7: Control FSM for Variable-
Latency Iterative Integer Multiplier –
Hybrid Moore/Mealy FSM with Mealy
transitions in the CALC state.
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Figure 8: Single-Cycle Integer Multiplier – We use reg-
istered inputs and combintionally connect the response
ready signal to the request ready and the input register
enable signals.
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