Scheduling: Exact Methods
Announcements

▶ Sign up for the first student-led discussions today
 – One slot remaining
 – Presenters for the 1st session will meet with instructor on Tuesday 9/19
 – Form groups on CMS by tomorrow (9/15) 11:59pm

▶ HW 1 due tomorrow at 11:59pm

▶ Lab 2 to be released tomorrow
Example: Basic Blocks and CFG

- Can you partition the program into basic blocks and draw the corresponding CFG?

for (i = 0; i < N; i++)
 if (i > 0) A[i-1] = 0;
return;

Leader statement is:
(1) the first in the program
(2) any that is the target of a branch
(3) any that immediately follows a branch
(4) A[i-1] = 0
(5) i++
(6) goto (2)
(7) return
Review: Dominator Tree and Dominance Frontier

Algorithm to compute DF set
For each convergence point X in the CFG
For each predecessor, Y, of X in the CFG
Run up to $Z=\text{IDOM}(X)$ in the dominator tree,
adding X to $\text{DF}(N)$ for each N between $[Y, Z)$
Example: PHI Node Placement

- X are defined in B_0 and B_4 in non-SSA form
- Can you identify all the basic blocks where ϕ-nodes need to be inserted for X in the SSA form?
Agenda

- Unconstrained scheduling
 - ASAP and ALAP

- Constrained scheduling
 - Resource constrained scheduling (RCS)
 - Exact formulations with integer linear programming (ILP)
Review: A Typical HLS Flow

High-level Programming Languages
(C/C++, OpenCL, SystemC, ...)

Parsing

Transformations

Intermediate Representation (IR)

Allocation

Scheduling

Binding

RTL generation

if (condition) {
 ...
} else {
 t_1 = a + b;
 t_2 = c * d;
 t_3 = e + f;
 t_4 = t_1 * t_2;
 z = t_4 - t_3;
}

Control data flow graph (CDFG)

Finite state machines with datapath

3 cycles

Intermediate Representation (IR)
Scheduling in High-Level Synthesis

- Scheduling: a central problem in HLS
 - Introduce clock boundaries to untimed or partially timed input specification
 - Significant impact on QoR
 - Frequency
 - Latency
 - Throughput
 - Area
 - Power
 ...

Scheduling: Untimed to Timed

Control-Data Flow Graph

Latency

Area

Throughput

\[out_1 = f(in1, in2, in3, in4) \]

\[
\begin{align*}
 t_{clk} & = 3 \, d_{add} \\
 T_1 &= 1 / t_{clk} \\
 A_1 &= 3 \, A_{add} \\
 t_{clk} & \approx d_{add} + d_{setup} \\
 T_2 &= 1 / (3 \, t_{clk}) \\
 A_2 &= A_{add} + 2 \, A_{reg} \\
 t_{clk} & = d_{add} + d_{setup} \\
 T_3 &= 1 / t_{clk} \\
 A_3 &= 3 \, A_{add} + 6 \, A_{reg}
\end{align*}
\]
Scheduling Input

- Control data flow graph (CDFG)
 - Generated by a compiler front end from high-level description
 - Nodes
 - Operations (and pseudo operations)
 - Directed edges
 - Data edges, control edges, precedence edges

- Without control flow, the basic structure is a data flow graph (DFG)

\[xl = x+dx; \]
\[ul = u-3*x*u*dx-3*y*dx \]
\[yl = y+u*dx \]
\[c = xl<a; \]
\[x = xl; u = ul; y = yl; \]
Scheduling Output

- Scheduling: map operations to states
- Each clock cycle corresponds to a state in the FSM
 - Commonly referred to as control step (c-step)

DFG

FSM or State Transition Diagram (STG)
Unconstrained Scheduling

- Only consideration: dependence

- As soon as possible (ASAP)
 - Schedule an operation to the earliest possible step

- As late as possible (ALAP)
 - Schedule an operation to the earliest possible step, without increasing the total latency
ASAP Schedule

\[Y = ((a*b)+c)+(d*e)-(f+g) \]

The start time for each operation is the least one allowed by the dependencies

ASAP(G(V, E)):

\[V' = \text{Topological_Sort}(G) \]

foreach \(v_i \) in \(V' \):

// Primary inputs (PIs) to first cycle

if \(v_i \in \text{PIs} \): \(t_i = 1 \)

// Assume no chaining & single-cycle operations

else: \(t_i = \max(t_j + 1) \); // \((v_j, v_i) \in E\)
ALAP Schedule

ALAP(G(V, E), L): // L is the latency bound
V’ = Reverse_Topological_Sort(G)
foreach vᵢ in V’:
 // Primary outputs (Pos) to last cycle
 if vᵢ ∈ POs: tᵢ = L
 // Assume no chaining & single-cycle operations
else: tᵢ = min(tⱼ) - 1; // (vᵢ, vⱼ) ∈ E

The end time of each operation is the latest one allowed by the dependencies and the latency constraint

Y = ((a*b)+c)+(d*e)-(f+g)
Operation Mobility (Slack)

Mobility (or slack) is the difference of the start times computed by the ALAP and ASAP

\[Y = ((a \times b) + c) + (d \times e) - (f + g) \]
Constrained Scheduling

- Constrained scheduling
 - General case NP-hard
 - Resource-constrained scheduling (RCS)
 - Minimize latency given constraints on area or resources
 - Time-constrained scheduling (TCS)
 - Minimize resources subject to bound on latency

- Exact methods
 - Integer linear programming (ILP)
 - Hu’s algorithm for a very restricted problem

- Heuristics
 - List scheduling
 - Force-directed scheduling
 - SDC-based scheduling
 …
Linear Programming

- **Linear programming (LP)** solves the problem of maximizing or minimizing a linear objective function subject to linear constraints
 - Efficiently solvable both in theory and in practice

- **Integer linear programming (ILP)**: in addition to linear constraints and objective, the values for the variables have to be integer
 - NP-Hard in general (A special case, 0-1 ILP)
 - Modern ILP solvers can handle problems with nontrivial size

- Enormous number of problems can be expressed in LP or ILP
Canonical Form of ILP

maximize $c_1x_1 + c_2x_2 + \ldots + c_nx_n$ // objective function
subject to // linear constraints
 $a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n \leq b_1$
 $a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n \leq b_2$

 $a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n \leq b_m$
 $x_i \geq 0$
 $x_i \in \mathbb{Z}$

Vector form

maximize c^Tx // $c = (c_1, c_2, \ldots, c_n)$
subject to // A is a $m \times n$ matrix; $b = (b_1, b_2, \ldots, b_n)$
 $Ax \leq b$
 $x \geq 0$ and
 $x_i \in \mathbb{Z}$
Example: Course Selection Problem

A student is about to finalize her course selection for the coming semester, given the following information:

- Minimum credits / semester: 8

<table>
<thead>
<tr>
<th>Course</th>
<th>Schedule</th>
<th>Credits</th>
<th>Est. workload</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Big data analytics</td>
<td>MW 2:00-3:30pm</td>
<td>3</td>
<td>8 hrs</td>
</tr>
<tr>
<td>2. How to build a start-up</td>
<td>TT 2:00-3:00pm</td>
<td>2</td>
<td>4 hrs</td>
</tr>
<tr>
<td>3. Linear programming</td>
<td>MW 9:00-11:00am</td>
<td>4</td>
<td>10 hrs</td>
</tr>
<tr>
<td>4. Analog circuits</td>
<td>TT 1:00-3:00pm</td>
<td>4</td>
<td>12 hrs</td>
</tr>
</tbody>
</table>

Question: Which courses to take to minimize the amount of work?
ILP Formulation for Course Selection

- Define decision variables \((i = 1, 2, 3, 4)\):
 \[x_i = \begin{cases}
 1 & \text{if course } i \text{ is taken} \\
 0 & \text{if not}
 \end{cases} \]

- The total expected work hours: \(8x_1 + 4x_2 + 10x_3 + 12x_4\)
- The total credits taken: \(3x_1 + 2x_2 + 4x_3 + 4x_4\)
- Account for the schedule conflict: \(x_2 + x_4 \leq 1\)

- Complete ILP formulation (in canonical form):
 \[
 \text{minimize } 8x_1 + 4x_2 + 10x_3 + 12x_4 \\
 \text{s.t. } 3x_1 + 2x_2 + 4x_3 + 4x_4 \geq 8 \\
 x_2 + x_4 \leq 1 \\
 x_i \in \{0, 1\}
 \]

<table>
<thead>
<tr>
<th></th>
<th>Time</th>
<th>CRs</th>
<th>Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Big data</td>
<td>MW 2-3:30pm</td>
<td>3</td>
<td>8 hrs</td>
</tr>
<tr>
<td>2. Start-up</td>
<td>TT 2-3pm</td>
<td>2</td>
<td>4 hrs</td>
</tr>
<tr>
<td>3. Linear prog.</td>
<td>MW 9-11am</td>
<td>4</td>
<td>10 hrs</td>
</tr>
<tr>
<td>4. Analog</td>
<td>TT 1-3pm</td>
<td>4</td>
<td>12 hrs</td>
</tr>
</tbody>
</table>
When functional units are limited

- Each functional unit can only perform one operation at each clock cycle
 - e.g., if there are only K adders, no more than K additions can be executed in the same c-step

A resource-constrained scheduling problem for DFG

- Given the number of functional units of each type, minimize latency
- NP-hard problem
ILP Formulation of RCS

- Use binary decision variables
 - \(x_{ik} = 1 \) if operation \(i \) starts at step \(k \), otherwise \(= 0 \).
 - \(i = 1, 2, ..., N \) : \(N \) is the total number of operations
 - \(k = 1, ..., L \) : \(L \) is the given upper bound on latency

\[
t_i = \sum_{k=1}^{L} k x_{ik}
\]

\(t_i \) indicates the start time of operation \(i \)
ILP Formulation of RCS: Constraints (1)

- Linear constraints:
 - Unique start times: \[\sum_{k} x_{ik} = 1, \quad i = 1, 2, ..., N \]
 - Dependence must be satisfied (no chaining)
 \[t_j \geq t_i + d_i + 1 : \forall (v_i, v_j) \in E \Rightarrow \sum_{k} k \cdot x_{jk} \geq \sum_{k} k \cdot x_{ik} + d_i + 1 \]

 \(v_j \) must not start before \(v_i \) completes
 since \(v_j \) depends on \(v_i \)
Start Time vs. Time(s) of Execution

- d_i: latency of operation i
 - $d_i = 0$ indicates single-cycle combinational logic

- When $d_i = 0$, then the following questions are the same:
 - Does operation i start at step k
 - Is operation i running at step k

- But if $d_i > 0$, then the two questions should be formulated as:
 - Does operation i start at step k
 - Check if $x_{ik} = 1$ hold
 - Is operation i running at step k
 - Check if the following hold?
 \[
 \sum_{l=k-d_i}^{k} x_{il} \neq 1
 \]
Operation v_i Still Running at Step k?

- Is v_9 ($d_9 = 2$) running at step 6?

 If and only if $x_{9,6} + x_{9,5} + x_{9,4}$ equals 1

Note:
- Only one (if any) of the above three cases can happen
- To meet resource constraints, we have to ask the same question for ALL steps, and ALL operations of that type
ILP Formulation of RCS: Constraints (2)

- Linear constraints:

 - Unique start times: \(\sum_{k} x_{ik} = 1, \quad i = 1, 2, \ldots, N \)

 - Dependence must be satisfied (no chaining)
 \[
 t_j \geq t_i + d_i + 1: \forall (v_i, v_j) \in E \Rightarrow \sum_{k} k \cdot x_{jk} \geq \sum_{k} k \cdot x_{ik} + d_i + 1
 \]

 - Resource constraints
 \[
 \sum_{i: RT(v_i) = r} \sum_{l=k-d_i} x_{il} \leq a_r, \quad r = 1, \ldots, n_{res}, \quad k = 1, \ldots, L
 \]
 \(RT(v_i)\): resource type ID of operation \(v_i\) (between 1~\(n_{res}\))
 \(a_r\) is the number of available resources for resource of type \(r\)
Students presenting next Thursday are expected to set up an appointment with the instructor.

Next lecture: More scheduling algorithms
Acknowledgements

- These slides contain/adapt materials developed by
 - Ryan Kastner (UCSD)