More Binding
Pipelining
Logistics

- Lab 3 due Friday 10/6
 - No late penalty for this assignment (up to 3 days late)

- HW 2 will be posted tomorrow
Agenda

- More resource sharing
 - Perfect graphs
 - Left-edge algorithms

- Introduction to pipelining
 - Common forms in hardware synthesis
 - Throughput restrictions
 - Dependence types
Review: Compatibility and Conflict Graphs

- Compatibility graph:
 - Partition the graph into a minimum number of cliques
 - Clique in an undirected graph is a subset of its vertices such that every two vertices in the subset are connected by an edge

- Conflict graph:
 - Color the vertices by a minimum number of colors (chromatic number), where adjacent vertices cannot use the same color

A scheduled DFG

Clique partitioning on compatibility graph

Coloring on conflict graph

Operations have same type
Perfect Graphs

- Clique partitioning and graph coloring problems are NP-hard on general graphs, with the exception of perfect graphs

- Definition of perfect graphs
 - For every induced subgraph, the size of the maximum (largest) clique equals the chromatic number of the subgraph
 - Examples: bipartite graphs, chordal graphs, etc.
 - Chordal graphs: every cycle of four or more vertices has a chord, i.e., an edge between two vertices that are not consecutive in the cycle.
Interval Graph

- Intersection graphs of a (multi)set of intervals on a line
 - Vertices correspond to intervals
 - Edges correspond to interval intersection
 - A special class of chordal graphs

[Figure source: en.wikipedia.org/wiki/Interval_graph]
Example: Meeting Scheduling

<table>
<thead>
<tr>
<th>Meeting</th>
<th>Schedule (am)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>9:00~11:00</td>
</tr>
<tr>
<td>B</td>
<td>9:30~10:00</td>
</tr>
<tr>
<td>C</td>
<td>10:00~11:00</td>
</tr>
<tr>
<td>D</td>
<td>11:00~11:30</td>
</tr>
</tbody>
</table>

Interval graph

Conflict graph
- chromatic number = 2
- max clique size = 2

Compatibility graph
- max clique size = 3
- chromatic number = 3

Gantt chart
Left Edge Algorithm

- **Problem statement**
 - Given: Input is a group of intervals with starting and ending time
 - Goal: Minimize the number of colors of the corresponding interval graph

Repeat

- create a new color group \(c \)

Repeat

- assign leftmost feasible interval to \(c \)

until no more feasible interval

until no more interval

Interval are sorted according to their left endpoints

Greedy algorithm, \(O(n\log n) \) time
Left Edge Demonstration

Lifetime intervals with a given schedule

Assign colors (or tracks) using left edge algorithm

Colored conflict graph
Binding Impact on Multiplexer Network

<table>
<thead>
<tr>
<th>Functional Unit</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mul1</td>
<td>op1, op3</td>
</tr>
<tr>
<td>AddSub1</td>
<td>op2, op4</td>
</tr>
<tr>
<td>AddSub2</td>
<td>op5, op6</td>
</tr>
</tbody>
</table>

Binding 1

<table>
<thead>
<tr>
<th>Functional Unit</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mul1</td>
<td>op1, op3</td>
</tr>
<tr>
<td>AddSub1</td>
<td>op2, op4, op6</td>
</tr>
<tr>
<td>AddSub2</td>
<td>op5</td>
</tr>
</tbody>
</table>

Binding 2
Binding Algorithms to Optimize MUX Network

▸ The connectivity binding problem is NP-Hard
 – Exact ILP formulations available but not scalable

▸ Graph-based heuristic algorithms
 – Clique partitioning [Tseng CAD’86] [Paulin DAC’86]
 – Bipartite [Huang DAC’90]
 – Min-cost network-flow [Chang DAC’95] [Chen ASPDAC’04] [Chen DAC’06]

▸ Meta-heuristics using simulated annealing, evolutionary algorithm, etc.
 – Pros: Consider multiple optimization parameters together for globally better results
 – Cons: Run-time and scalability
Binding Summary

- Resource sharing directly impacts the complexity of the resulting datapath
 - # of functional units and registers, multiplexer networks, etc.

- Binding for resource usage minimization
 - Left edge algorithm: greedy but optimal for DFGs
 - **NP-hard problem with the general form of CDFG**
 - Polynomial-time algorithm exists for SSA-based register binding, although more registers are required

- Connectivity binding is intractable
Parallelization Techniques

- Parallel processing
 - Emphasizes concurrency by **replicating** a hardware structure several times
 - High performance is attained by having all structures execute simultaneously on different parts of the problem to be solved

- Pipelining
 - Takes the approach of **decomposing** the function to be performed into smaller stages and allocating separate hardware to each stage (Heterogeneous)
 - Data/instructions flow through the stage of a hardware pipeline at a rate (often) independent of the length of the pipeline

[source: Peter Kogge, The Architecture of Pipelined Computers]
Common Forms of Pipelining

- **Operator pipelining**
 - Fine-grained pipeline (e.g., functional units, memories)
 - Execute a sequence of operations on a pipelined resource

- **Loop/function pipelining** *(focus of this class)*
 - Statically scheduled
 - Overlap successive loop iterations / function invocations at a fixed rate

- **Task pipelining**
 - Coarse-grained pipeline formed by multiple concurrent processes (often expressed in loops or functions)
 - Dynamically controlled
 - Start a new task before the prior one is completed
Operator Pipelining

- Pipelined multi-cycle operations
 - \(v_3 \) and \(v_4 \) can share the same pipelined multiplier (3 stages, latency = 2)
Loop Pipelining

- Loop pipelining is one of the most important optimizations for high-level synthesis
 - Allows a new iteration to begin processing before the previous iteration is complete
 - Key metric: **Initiation Interval (II)** in # cycles

```plaintext
for (i = 0; i < N; ++i)
  p[i] = x[i] * y[i];
```

Pipeline schedule

- **ld** – Load
- **st** – Store

II = 1
Pipeline Performance

- Given a 100-iteration loop with the loop body taking 50 cycles to execute
 - If we pipeline the loop with II = 1, how many cycles do we need to complete execution of the entire loop?
 - What about II = 2?
Function Pipelining

- Function pipelining: Entire function is becomes a pipelined datapath

```c
void fir(int *x, int *y)
{
    static int shift_reg[NUM_TAPS];
    const int taps[NUM_TAPS] =
        {1, 9, 14, 19, 26, 19, 14, 9, 1};
    int acc = 0;
    for (int i = 0; i < NUM_TAPS; ++i)
        acc += taps[i] * shift_reg[i];
    for (int i = NUM_TAPS - 1; i > 0; --i)
        shift_reg[i] = shift_reg[i-1];
    shift_reg[0] = *x;
    *y = acc;
}
```

Pipeline the entire function of the FIR filter
(with all loops unrolled and arrays completely partitioned)
A coarse-grained pipeline for the optical flow algorithm

```c
232 ///////////////////////////////////////////////////////////////////////////
233 void gradientWeightingH(unsigned short width, unsigned short height,
234                          short gradientOrigin[HEIGHT*WIDTH][3],
235                          short interGradientWeighting[HEIGHT*WIDTH][3]
236 )
237 {
238   static unsigned int inIdx = 0;
239   static unsigned int outIdx = 0;
240   unsigned int k, m, i, j;
241   short gradientWeightingRowWindow[3][WeightSize];
242   short tmpOutput[3];
243   short tmpInput[3];
244   
245   for (i = 0; i < height; ++i) { // loop over rows
246     for (j = 0; j < width + WeightRadius; ++j) { // loop over columns
247       for (m = 0; m < 3; ++m)
248         tmpOutput[m] = 0;
249       
250       if (j < width) { // make sure it read height*width times
251         for (m = 0; m < 3; ++m)
252           tmpInput[m] = gradientOrigin[inIdx][m];
253           ++inIdx;
254       }
255       
256       if (j < width && i > WeightRadius && i < height - WeightRadius) {
257         for (m = 0; m < 3; ++m)
258           for (k = 0; k < WeightSize-1; ++k)
259             gradientWeightingRowWindow[m][k] = gradientWeightingRowWindow[m][k+1];
260         gradientWeightingRowWindow[m][WeightSize-1] = tmpInput[m];
261       }
262   }
263 }
```
Restrictions of Pipeline Throughput

- Resource limitations
 - Limited compute resources
 - Limited Memory resources (esp. memory port limitations)
 - Restricted I/O bandwidth
 - Low throughput of subcomponent
 ...

- Recurrences
 - Also known as feedbacks, carried dependences
 - **Fundamental limits of the throughput of a pipeline**
Resource Limitation

- Memory is a common source of resource contention
 - e.g. memory port limitations

```cpp
for (i = 1; i < N; ++i)
   b[i] = a[i-1] + a[i];
```

<table>
<thead>
<tr>
<th>i</th>
<th>cycle 1</th>
<th>cycle 2</th>
<th>cycle 3</th>
<th>cycle 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ld₁</td>
<td></td>
<td></td>
<td>st</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>ld₂</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

Port conflict

Only one memory read port → 1 load / cycle

Assuming ‘a’ and ‘b’ are held in two different memories
Recurrence Restriction

- Recurrences restrict pipeline throughput
 - Computation of a component depends on a previous result from the same component

for (i = 1; i < N; ++i)
 a[i] = a[i-1] + a[i];

Assume chaining is not possible on memory reads (i.e., \text{ld}) and writes (i.e., \text{st}) due to cycle time constraint.
Type of Recurrences

- Types of dependences
 - True dependences, anti-dependences, output dependences
 - Intra-iteration vs. inter-iteration dependences

- Recurrence – if one iteration has dependence on the same operation in a previous iteration
 - Direct or indirect
 - Data or control dependence

- Distance – number of *iterations* separating the two dependent operations (0 = same iteration)
True Dependences

- True dependence
 - Aka flow or RAW (Read After Write) dependence
 - $S_1 \rightarrow^t S_2$
 - Statement S_1 precedes statement S_2 in the program and computes a value that S_2 uses

Example:

```c
for (i = 0; i < N; i++)
```

Inter-iteration true dependence on $A[]$
(distance = 1)
Anti-Dependences

- Anti-dependence
 - Aka WAR (Write After Read) dependence
 - \(S_1 \rightarrow^a S_2 \)
 - \(S_1 \) precedes \(S_2 \) and may read from a memory location that is later updated by \(S_2 \)
 - Renaming (e.g., SSA) can resolve many of the WAR dependences

Example:

```c
for (… i … ) {
    A[i-1] = b - a;
    B[i] = A[i] + 1
}
```

Inter-iteration anti-dependence on \(A[] \) (distance = 1)
Output Dependences

- Output dependence
 - Aka WAW (Write After Write) dependence
 - \(\text{S1 precedes S2 and may write to a memory location that is later (over)written by S2} \)
 - Renaming (e.g., SSA) can resolve many of the WAW dependences

Example:

```plaintext
for (… i++) {
    B[i] = A[i-1] + 1
    A[i] = B[i+1] + b
    B[i+2] = b - a
}
```

Inter-iteration output dependence on \(B[] \) (distance = 2)
Data dependences of a loop often represented by a dependence graph

- Forward edges: **Intra-iteration** (loop-independent) dependences
- Back edges: **Inter-iteration** (loop-carried) dependences
- Edges are annotated with distance values: number of iterations separating the two dependent operations involved

Recurrence manifests itself as a **circuit** in the dependence graph
Before Next Class

- Next lecture: More pipelining (modulo scheduling)