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1.  Introduction 
This extended abstract previews two on-going projects at NCSU to design, fabricate, test, and evaluate novel processors. Both 

processors are derived from FabScalar-generated superscalar cores [1]. The technical objective of both processors is to exploit 
adaptivity: adapting the microarchitecture to varying instruction-level behavior in programs. They represent two different forms of 
adaptive processors. The H3 processor features two different superscalar core types with fast thread migration between the two. The 
core is virtually customized to the currently executing program phase by way of migrating the program’s execution to the most 
suitable core. Both 2D and 3D IC implementations are being pursued. The AnyCore processor is a single highly reconfigurable 
superscalar core. Its superscalar widths and structure sizes are adjustable. 

Aside from their technical objectives, these projects are motivated in part by two other personal goals. First, having spearheaded 
the FabScalar project, we wanted to fulfill its original purpose – streamline the development of single-ISA heterogeneous multi-core 
processors. A chip-building funding opportunity arose which perfectly matched the capabilities afforded by NCSU’s FabScalar 
toolset, heterogeneous multi-core research program, and 2D/3D IC physical design and fabrication expertise. Second, speaking for the 
computer architects in the project, another personal goal was to experience the distraction, risk, and reward of building something. 
Having wandered far outside of our comfort zone of simulation and the grind of the premier conference circuit, we tremendously 
expanded our knowledge and skills. 

The focus of this write-up is on the design, fabrication, and custom test infrastructure of the projects; a timeline for each project to 
gauge effort and hurdles; and current status. This write-up will not delve into the underlying research, microarchitectures, or 
performance results. 
2.  H3 Project 
Project Overview 

In the H3 project, we are building a 3D Heterogeneous Multi-core Processor (“H3” stands for “heterogeneity in 3D”). The 3D IC 
will consist of two 3D-stacked superscalar cores. The two cores are a 1-wide superscalar and a 2-wide superscalar, with respect to 
peak instruction fetch rate. The 1-wide core has smaller ILP-extracting structures (active list, issue queue, LQ/SQ, and physical 
register file) than the 2-wide core. Both cores have three execution lanes (3-wide issue): simple/complex integer ALU lane, load/store 
lane, and branch lane. 

H3 features Fast Thread Migration (FTM) and Cache-Core Decoupling (CCD). FTM is a bulk swap of the architectural register 
state of the two cores, enabling fine-grain switching of threads between the two cores. CCD is the ability for a core to access either its 
caches or the other core’s caches. This can be used to avoid migration-induced misses at the expense of higher hit latency due to 
crossing clock domains. Migrations can be initiated either from an off-chip interrupt signal (referred to as a global migration) or from 
the program itself via a new migrate instruction (a local migration). FTM and CCD require low-latency high-bandwidth interconnect. 
3D face-to-face bonding is the ideal technology to meet this requirement. 

More details can be found in our ICCD 2013 paper [2]. That paper was published after the first tapeout (2D version of two-core 
stack) and before packaging, PCB design, and chip bring-up. 

The project has two phases. In the first phase, we built a 2D version of the two-core stack to test the design, compiled memories, 
etc., and to work out the physical design flow. The 2D version also contains a “debug core” as explained below. The first phase is well 
into chip bring-up. Meanwhile, we have begun the second phase, which is to partition the design for 3D stacking, fix functional bugs 
and performance bugs found during the first phase, and incorporate new features that did not make it into the first phase. 
Design and Verification 

Figure 1 summarizes all of the RTL design and physical design tasks performed prior to the May 20, 2013, tapeout of the 2D 
version, via a timeline (obtained by carefully combing through hundreds of project emails). In the workshop, we will use this timeline 
and the one in the chip bring-up section to initiate discussions. There are several key takeaways. 

Ɣ FabScalar accelerated the RTL design in that we did not have to design the superscalar cores, and this leverage applied to two 
different core types. Instead, as the timeline shows, the RTL design effort focused on implementing caches and their off-chip 
buses (custom I$ and retooled OpenSparc T2 D$), adapting the Fetch-1 stage and load/store lane for synchronous read/write 
compiled memories, implementing novel features (FTM, CCD, performance counters), and implementing a third independent 
low-risk debug core. The RTL design effort took 9 months and 4 students, measured from RTL generation of the two raw 
FabScalar core types in Jan. 2012 to the RTL freeze in Sep. 2012. Moreover, some students were separately performing 
research tasks and taking classes in this period. 

Ɣ Significant attention was paid to mitigating risk. Most notably, we included a third core separate from the two-core-stack 
called the debug core. It has the same microarchitecture as the 2-wide core in the two-core-stack, except it does not have the 
new features of FTM and CCD. It has small synthesized scratchpads for instructions and data, instead of complex caches and 
SRAM macros. It features full scan. Its only signal I/Os are for the five scan chains. Thus, the debug core does not depend on 
the compiled memories working; it is free from the risk of the highly complex OpenSparc T2 D$; it has a simple scan 
interface for loading the scratchpads with microbenchmarks; and its scan chains provide total observability and 
controllability for debug and escaped-bug circumvention. Essentially, the debug core provides a low-risk Plan B to test a pure 
FabScalar superscalar core. In terms of lowering risk in the two-core-stack, each core has dedicated request and response 
buses (for servicing miss requests), for four 1-byte buses total. Serializers/deserializers packetize requests and responses into 
1-byte packets. Anticipating possible changes in pad allocations to the different chip experiments, the bus width is 
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parameterized in the RTL -- mitigating risk from a schedule standpoint. This aspect was exploited when the bus width had to 
decrease from 2 bytes to 1 byte. 

Ɣ Interestingly, the 2D version of H3 was not originally planned. Both phases were supposed to be 3D. The Nov. 19, 2012, 
tapeout using the Tezzaron process was deferred until Mar. 2013, and then indefinitely. We decided to tapeout a 2D version 
with an IBM process and corresponding ARM IP which NCSU already had licensed, which in hindsight is very useful 
anyway for testing the design, flow, etc. In Dec. 2012, we unpacked the IBM 8RF PDK and ARM standard cells, pads, and 
memory compilers. We missed the first tapeout opportunity (Feb. 2013) and made the second one (May 2013). Figure 2, 
Table 1, and Table 2, show the final layout, physical design data, and flow execution time, respectively. 

Our RTL verification plan was not up to commercial standards but we felt it was adequate for the project goals. We primarily 
used 100 million instruction SimPoints of SPEC benchmarks to stress the cores. FTM and CCD were tested using these same 
benchmarks, with either global migration interrupts asserted by the pin-accurate testbench or local migrate instructions inserted into 
the benchmark. Different clock domains and different frequencies were tested. 

A serious concern was the complexity and lack of time in getting post-synthesis/post-layout netlist simulation going. We only got 
it going just after tapeout. Indeed, post-synthesis netlist simulation caught a serious, but not fatal, bug caused by a misplaced `ifdef.  
The verilog testbench defined it but the synthesis script did not. It is described in the errata Table 3 (issue #1), and will be discussed at 
the workshop as two key lessons. First, simulation-related instrumentation should be avoided in the synthesizable RTL altogether and 
consolidated in the testbench. Then there is no chance of misplaced instrumentation. Second, leave enough time for post-synthesis and 
post-layout netlist simulation. Gate-level simulation is challenging to get initiated, slow, and painstaking to debug. 

Post-synthesis/post-layout netlist simulation would have also caught probable hold-time violations in the OpenSparc T2 D$, 
which we encountered in chip bring-up (Table 3, issue #5). As to whether or not these were flagged by static timing analysis in Design 
Compiler, Prime Time, and/or Encounter, we would have to revisit and audit the timing reports. In any case, timing violations in 
netlist simulation are persuasive as they manifest as functional bugs (e.g., propagation of x’s). The fact that netlist simulation models 
delays is also one of the reasons it is challenging to get started (correctly annotating the netlist with Standard Delay Format (.sdf)). 

About second phase (3D version of H3): 
We initially planned to use a Tezzaron 3D process with (1) face-to-face bonding for FTM and CCD between stacked cores and (2) 

through-silicon-vias (TSVs) to stacked DRAM. Plans with Tezzaron have not materialized so we are scaling back the 3D aspect to 
only implement face-to-face bonding. Without stacked DRAM, the cores need pads for their memory buses, as before. Conventional 
pads are out because the top metal layers of the two chips are bonded to each other. We will use a Ziptronix 3D process with face-to-
IDFH� ERQGLQJ� �UHFRPPHQGHG� �ȝP�ERQG� SLWFK�� DQG� SDGV� LPSOHPHQWHG� LQ� WKH�0HWDO-1 layer of the top (flipped) chip. The pads are 
exposed by thinning the top chip and back-etching through its substrate to the pads. The pads will then be wirebonded to a 
conventional package. 

We are working towards an August 2015 tapeout. A major change in the design is replacing the OpenSparc T2 D$ with a D$ 
designed in-house (the D$ from the AnyCore project). The open-source D$ was ill-fated due to its pervasive use of latch-based design 
and its highly structural style. Latches are explicitly instantiated in the indexing paths of all RAM instances (among other places), 
presumably due to the use of custom RAMs with complementary latches embedded somewhere within the RAM. We kept the leading 
latches and adjusted the clocks to our compiled RAMs. Issue #5 in Table 3 describes a load that never retires due to repeatedly 
missing in the cache (the core replays a cache-missed load until it hits). Netlist simulation shows the tag not being written to the 
correct set (set index goes to x’s), owing to a hold-time violation in the set index for the tag fill. (Table 3 discusses the workaround.) 
Packaging, PCB Design, and Chip Bring-up 

Figure 3 shows a timeline for three post-silicon tasks: packaging, printed circuit board (PCB) design, and chip bring-up. This 
“physical” part of the project is one of the most fascinating experiences and we will try to convey all of its facets at the workshop. 
Moreover, we took different approaches in the H3 and AnyCore projects (the latter leveraging lessons from the former), providing 
interesting contrasts. Here are some highlights from the H3 project: 

Ɣ The 2D version of H3 has 400 pads divided into four experiments (see Table 5), each experiment being allocated 100 pads. A 
400+ pin package is too sophisticated for an academic project (in our opinion). We opted for a 128-pin gull-wing Quad Flat 
Package (QFP). This shifted the complexity to wirebond diagrams and PCBs: we needed four separate wirebond 
configurations and PCB designs. This effort was supported by research staff on the project. 

Ɣ We opted for two routes with the debug core experiment: packaged (not pictured) and chip-on-board (Figure 4). We learned 
some hard lessons about lead forming and PCB assembly from the former. The latter, done in-house with a wire bonder in 
our lab, was successful in performing basic liveness tests (no short circuit between Vdd/V+ and Gnd, scan out == scan in, 
etc.) and ultimately retiring millions of instructions of microbenchmarks. In-house wirebonding was practical thanks to the 
debug core having only a dozen scan pads to wirebond (and living on the edge with only a few power and ground pads 
wirebonded). 

Ɣ After initial success with the debug core, we moved on to testing the two-core stack. Figure 5 shows its package surface-
mounted onto its 4-layer PCB. On the underside of the PCB is an FMC LPC connector for attaching the PCB as a mezzanine 
card to a Xilinx ML605 FPGA board. All signal I/Os go to both the LPC connector and headers, the latter allowing for 
debugging independent of the FPGA board. Arbitrary testbenches are synthesized to the FPGA and it also services L1 
instruction and data cache misses from the cores. Elliott developed a convenient GUI and software backend on the host PC 
for downloading and running testbenches. Moreover, he also developed a compiler for compiling a language that lies 
somewhere between C and assembly, so that we can strictly control the types and ordering of instructions in benchmark 
programs without literally writing assembly. Using this setup, we found several issues with the setup itself (current meter 
causing flaky processor reset) and bugs in the chip. These are documented in the errata Table 3. Results of several 



microbenchmarks are shown in Table 4. 
3.  AnyCore Project 
Project Overview: The released FabScalar toolset generates cores by piecing together pipeline stages of the desired widths/depths 
from a pipeline stage library. Internally, we have been using a newer version of FabScalar called the “superset core”: a single verilog 
description in which pipeline stage widths are parameterized (structure sizes were already parameterized). The AnyCore design began 
with the superset core. Its static configurability was preserved so that AnyCore processors of different maximum widths and sizes can 
be synthesized. This aspect proved quite convenient as we had to scale back our original maximally configured AnyCore (from 6-way 
to 4-way maximum fetch width) to fit comfortably in terms of passing DRC and LVS without heroic physical design effort, and to 
allow for the addition of small L1 caches. The key functionality added to the superset core for AnyCore was dynamic configurability: 
the ability to dynamically configure superscalar widths and structure sizes. Table 6 shows the adaptive microarchitecture features for 
the AnyCore design point that was fabricated. 
Design and Verification: Please see Figure 6 for tasks and timeline. Notable features for testability: We implemented custom L1 
caches, which can be configured in three modes: cache, scratchpad, and BIST. A reset configures for scratchpad mode where the first 
N rows are preset to a test loop that toggles a pin. On April 9, we saw the BIST succeed! The chip also has a debug interface for 
directly reading/writing key structures (scratchpads/caches, register file, PC, etc.) as well as partial scan for backup. 
Packaging, PCB Design, and Chip Bring-up: Learning from the H3 project, we took a different approach. We packaged and lead-
formed through MOSIS using a 100-pin gull-wing QFP (CQFP100-CQZ10001). We consulted with Agile Enterprises to find a good 
socket (FPQ-100-0.5-06A). In parallel with the sockets arriving (6 weeks), we designed a 4-layer PCB to which the socket, LPC 
connector, headers, DCAPs, and bypassable shunt resistor are assembled. Each step along the way, we checked for potential problems 
and found none so far: peered inside the package to examine the chip’s orientation, bond wires, and downbonds; tested fit and 
connectivity of the package in the socket; tested bare boards; tested for Vdd/Gnd and V+/Gnd shorts with the package in the socket of 
assembled board (Figure 9). Finally, we applied power and clock, held scan enables low, and looked for the toggling BIST pin – and it 
succeeded on April 9, 2015. The socket approach is potentially scalable to other pad-conforming designs, avoids being hamstrung 
with a potentially faulty chip via easy substitution, and allows testing of variations. 
 
4. Acknowledgments 
The H3 project is supported by a grant from Intel. The AnyCore project is supported by NSF grant CCF-1018517. Any opinions, 
findings, and conclusions or recommendations expressed herein are those of the authors and do not necessarily reflect the views of the 
National Science Foundation. 
 
5.  References 
[1] N. K. Choudhary, S. V. Wadhavkar, T. A. Shah, H. Mayukh, J. Gandhi, B. H. Dwiel, S. Navada, H. H. Najaf-abadi, and E. 
Rotenberg. FabScalar: Composing Synthesizable RTL Designs of Arbitrary Cores within a Canonical Superscalar Template.  
Proceedings of the 38th IEEE/ACM International Symposium on Computer Architecture (ISCA-38), pp. 11-22, June 2011. 
[2] E. Rotenberg, B. Dwiel, E. Forbes, Z. Zhang, R. Widialaksono, R. Basu Roy Chowdhury, N. Tshibangu, S. Lipa, W. R. Davis, 
and P. D. Franzon. Rationale for a 3D Heterogeneous Multi-core Processor. Proceedings of the 31st IEEE International Conference on 
Computer Design (ICCD-31), pp. 154-168, October 2013. 

 
 



Appendix A: H3 Project 
 

 
 

Figure 1.  Timeline of RTL design and physical design tasks for May 20, 2013, tapeout of 2D version of H3. 

 

           
                                                   (a) Final layout.                                  (b) Die photo, with floorplan superimposed. 

Figure 2.  H3 processor (2D version). 

 
 
 

Timeline - Design and Verification

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun
Brandon: cores

generate dual hetero. cores with FabScalar

dust off in-order scalar core (cut from tapeout)

in-order core checked-in to SVN repo ј
FabScalar-generated cores checked-in to SVN repo ј

L1 instruction cache

modify Fetch-1 stage for synch. R/W RAMs for I$, BP, BTB

I/O (4 buses: core 1 req+resp, core 2 req+resp), serializer/deserializer

cache-core decoupling (CCD) for both I- and D-caches

synthesis and scan chain insertion

RTL freeze on "allcores" (Sep. 19, 2012) ј
delivered synthesized netlist with scan chains inserted ј

regenerate memories for L1 I$, L1 D$, BP, BTB (in IBM 8RF)

post-RTL-freeze verification (RTL  simulation)

post-tapeout verification (P&R netlist simulation)

hetero. multi-core research (C++ simulator, power models, etc.) research (culminated in data for ICCD-31 paper)

Rangeen: L1 data cache

study OpenSparc T2 L1 data cache

integrate T2 D$ into in-order core for early design and testing

integrated in-order core + D$ checked-in to SVN repo ј
misc. mods to T2 D$ (remove TLB, reset strategy, etc.)

redesign per-thread MHSRs for single thread miss-under-miss (MLP)

modify core's load/store lane for 2-cycle MEM stage

integrated OOO cores + D$ checked-in to SVN repo ј
debug

Elliott: core-side FTM, perf. counters, debug core

global migration

perf. counters

local migration

integrate with face-to-face bus controller

debug core: start debug core from 2-wide core

debug core: replace L1 I/D caches with I/D scratchpads

debug core: replace memory bus with scan I/O

Zhenqian: face-to-face bus for FTM
Randy: flow, physical design

missed tapeout: Tezzaron 3D run deferred indefinitely ј
download & unpack IBM 8RF PDK, ARM IP (std cells, pads, mem) ј

physical design (floorplan, P&R, DRC, LVS, power integrity)

missed tapeout: couldn't close on DRC, LVS ј
tapeout (May 20, 2013) ј

2012 2013



Table 1.  Physical design data. 

Technology IBM 8RF (130 nm) 
Dimensions 5.25 mm x 5.25 mm 
Area 27.6 mm2 
Transistors 14.6 Million 
Cells 1.1 Million 
Nets 721 Thousand 
Memory macros 56 
Clock domains 10 

 
 

Table 2.  Flow execution time. 

Encounter 9 hours 
Calibre DRC 4.5 hours 
Calibre LVS 2 hours 

 
 

Table 3.  Setup issues and chip bugs found thus far in the H3 project. 

 Symptom Description Stage Workaround 

1 Instructions that depend 
on loads will wake up 
early when the load 
misses (reading an 
incorrect value from the 
register file/bypass). 

A misplaced `ifdef guarded key 
RTL during simulation, but the 
`ifdef condition was not enabled 
during synthesis. 

post-tapeout Prefetch blocks such that loads will 
hit. 

2 Source-synchronous 
clock port errors in 
FPGA testbench during 
PAR/mapping. 

Clock signals from the cores to the 
FPGA were not routed to clock-
capable pins of the LPC. 

post-PCB-assembly Use a jumper from the clock header 
of the PCB to a clock-capable pin of 
the XM105 debug card attached to 
the HPC connector of the ML605. 

3 Non-repeatability in 
running single threaded 
test programs. 

High precision ammeter used to 
measure logic current.  Current 
draw of running core caused the 
ammeter to switch shunt resistance 
(with a relay) immediately after 
reset was de-asserted.  During the 
switch, the supply as seen by the 
core dropped below threshold 
voltage, causing metastability. 

post-silicon testing Use dedicated shunt resistor, and 
measure voltage drop across that 
resistor instead of the in-line 
ammeter. 

4 Repeated I-cache 
misses to the same 
block. 

- Frequently-executed and mostly-
taken branch in the last slot of a 
cache block. 
- A BTB update occurs when the 
branch is being fetched (Fetch-1 
stage), and the update is for this 
branch. Thus, there is a BTB write 
and a BTB read to the same entry, 
that of the branch. The BTB read 
indicates a miss due to the 
concurrent read and write. This 
causes Fetch-1 to fetch the next 
sequential block, generating an I-
cache miss. 

post-silicon testing This issue does not impact 
performance, but does make it 
difficult to measure the number of 
actual I-cache misses. It is possible to 
add NOPs to ensure frequently-
executed and mostly-taken branches 
are not in the last slot of a cache 
block. 



- The Fetch-1 stage is redirected to 
the branch’s taken target in the next 
cycle, when the branch is 
predecoded in the Fetch-2 stage. 
- Meanwhile, the I-cache miss 
request for the sequential block is 
not canceled. Further, the retrieved 
block is dropped by the core if the 
Fetch-1 stage is fetching 
instructions. 
- End result: The same miss (of the 
sequential block) is generated 
repeatedly. 

5 Cache-missed load 
never retires. 

After block is retrieved from 
memory, netlist simulation shows 
the tag not being written to the 
correct set (set index goes to x’s), 
owing to a hold-time violation in 
the set index for the tag fill. The 
core replays a cache-missed load 
until it hits. After the MHSR 
performs the flawed line-fill, the 
replayed load will miss again, 
generating another miss request for 
the same block. This repeats 
indefinitely. 

post-silicon testing Top Core: Hold-time violation on fill 
path seems to affect only the tag fill, 
not the data fill. Further, it appears 
that uninitialized tags in the tag 
SRAM are, by chance, 0. Thus, 
limiting load and store addresses to 
have tags of 0 masks the flawed tag 
fill. The workaround is not 
guaranteed but does seem very stable. 
 
Bottom Core: Not only does the 
load’s tag need to be 0, but we also 
had to lower Vdd to slow circuit 
paths. With these two measures, the 
replayed load hits and retires. 
However, the replayed load does not 
appear to get the correct data, 
presumably due to the data fill path 
being compromised (conjecture). 

6 Inability to read/write 
TRF registers. 

Attempted read/write of TRF 
registers in a single-thread 
experiment.  The reset of the F2F 
controller is fed through clock-
synchronizing flip-flop pairs, but 
the clock of the F2F controller was 
not running (since it was a single 
thread experiment). 

post-silicon testing Ensure F2F controller is clocked 
when either core is clocked, even 
when migrations are not being tested. 

7 Execution deadlock 
after a thread migration. 

The BTB is implemented in SRAM, 
including its valid bits, so valid bits 
are not reset after a migration.  This 
caused BTB hits on non-control 
instructions.  False BTB hits are 
detected and recovered in Fetch-2 
stage, except CTIQ is still pushed. 
Those instructions would allocate 
entries in the CTIQ, but during 
retirement, the CTIQ entry was not 
de-allocated. The CTIQ would fill, 
and fetch would stall indefinitely. 

post-silicon testing Carefully craft test programs such 
that instruction addresses do not 
overlap. 
 
Hard reset tends to work, but not 
guaranteed. 

8 Repeated thread 
migrations only work 
for fewer than 33 
migrations. 

The MIGRATE instruction is in a 
loop. If the loop-ending branch is 
fetched before the MIGRATE 
instruction retires, then a CTIQ 
entry will be allocated for the 

post-silicon testing Add instructions (NOPs if necessary) 
after a MIGRATE instruction to 
guarantee no branches can be fetched 
before the MIGRATE retires. 
 



branch. However, after the 
migration, the CTIQ is not reset, so 
the allocated entries are not de-
allocated, eventually filling the 
CTIQ, blocking forward progress. 

9 Unable to repeatedly 
migrate from core-to-
core when CCD is 
enabled. 

Debugging in progress post-silicon testing Unknown 

 
 

Table 4.  Microbenchmark results. 

Microbenchmark Core Static 
instr. 

Dynamic 
instr. 

Cycles IPC Current 
(mA) 

Energy 
(mJ) 

Comments 

PRNG 
pseudo-random 
number generator 

1-wide 

28 67.1M 

67.1M 1.00 8.53† 59.6 Peak IPC achieved. 

2-wide 64.4M 1.04 5.78 46.5 

IPC>1 due to branches. 
IPC not much greater than 1 because 
only one simple/complex ALU lane, 
and load/store lane unused.  

PRIMES 
prime number 
generator 

1-wide 

28 88.2M 

100.4M 0.88 8.35† 87.3 OOO tolerates 14-cycle integer 
divide instruction well. 

2-wide 301.8M 0.29 5.70 215.0 
Hypothesis: larger IQ and non-age-
based scheduler exacerbates priority 
inversion, stalling retirement more. 

ARRAY-SUM 
sum elements of 
an array 

1-wide 
35 41.9M 

Did not finish See Table 3, issue #5. 

2-wide 20.9M 2.00 6.54 17.1 Peak IPC achieved. 

BUBBLE 
bubble sort, list 
initially reverse 
sorted 

1-wide 

73 2.5M 

Did not finish See Table 3, issue #5. 

2-wide 8.5M 0.29 5.24 5.57 

Early diagnosis: SQ stalls dominate 
other resource stalls. 
Hypothesis: Limited store buffer size 
of write-through D$ causing back-
pressure. Frequent swaps imply 
many consecutive stores. Write-
through latency to FPGA is high. 

MIGRATE 
Migrate instr. in 
loop 

       

Completes 1 million consecutive 
thread migrations correctly. 
Cores at different frequencies. 
~1 migration per 1K cycles. 

† 1-wide core has higher current (and power) than 2-wide core because it has full scan. 
 

 
 

Figure 3.  Timeline of packaging, PCB design, and chip bring-up, for 2D version of H3. 

Timeline - post-tapeout

Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr
Steve: packaging, PCBs

bare die back from MOSIS (Sep. 6, 2013) ј
debug core: wirebond chip-on-board

debug core: package chip; design, fab, and assemble PCB

hetero. core pair: package chip; design, fab, and assemble PCB

Elliott: chip bring-up

develop compiler for controlled benchmark creation <<July 2013>>
debug core: Vdd/Gnd short test, current test, scan test

debug core: retire millions of instructions

debug core: simple power and freq. measurements

setup host PC and FPGA infrastructure

hetero. core pair: first instructions retired ј
hetero. core pair: synthesize full testbench to FPGA

hetero. core pair: 10M+ instr. retired (no memory ops) ј
hetero. core pair: on-going testing and debug

hetero. core pair: breakthrough - tracked down flaky reset issue ј
research ICCD-32 - Design-Effort Alloy (DEA) ICCD-32 revisions & pres.
research other

Thomas: scan chain scripts (debug core), chip bring-up

2013 2014 2015



 
 

Table 5.  The H3 processor (2D version) has 400 pads and supports four separate experiments each with 100 dedicated pads. 
With only a 128-pin package, each experiment has a different wirebond configuration (A through D). 

Wirebond Configuration Experiment Signal/Supply Pads 
A Heterogeneous core pair 63/37 
B Debug core 13/87 
C Isolated F2F bus 62/38 
D Isolated F2B bus 49/51 

 
 

 
Figure 4.  Chip-on-board setup for testing H3’s debug core. Wirebonding was done at NCSU due to feasible number of bonds. 

 
 

 
Figure 5.  Package for H3’s heterogeneous core pair, surface-mounted onto its 4-layer PCB.  Underside of PCB has the FMC 
LPC connector for attaching the PCB as a mezzanine card to the Xilinx ML605 FPGA board. 

 
 
 
 
 
 
 
 
 



Appendix B: AnyCore Project 
 

 
Figure 6.  AnyCore project timeline. 

 
 

Table 6.  Microarchitectural adaptivity of AnyCore chip. 

Adaptive microarchitecture feature Configurations 
fetch/dispatch width (instructions/cycle) 1, 2, 3, 4 
issue width (instructions/cycle) 3, 4, 5 
physical register file & active list 64, 96, 128 
load and store queues (each) 16, 32 
issue queue 16, 32, 48, 64 

 
 
 
 
 
 
 
 
 

Timeline - Design and Verification

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr
Rangeen: 6-wide core

Add microarchiterular adaptivity to superset

Add dynamic reconfiguration control

Beef up testbench to support dynamic reconfiguration tests

Add debug facility and configuration registers

RTL functional and performance verification and debug

synthesis, fine grain clock gating and scan chain insertion Flow Final
RTL feature freeze ј

post-synthesis verification (synthesized netlist simulation)

post-layout verification (P&R netlist simulation)

UPF based power aware design and synthesis flow research

UPF based power aware netlist simulation and power analysis

Rangeen: 4-wide core

Add coarse grain clock gates - partition level

RTL functional and performance verification and debug

synthesis and scan chain insertion

post-synthesis verification (synthesized netlist simulation)

post-layout verification (P&R netlist simulation)

UPF based power aware design and synthesis flow research

UPF based power aware netlist simulation and power analysis

Rangeen: L1  caches

Non blocking write through data cache

Instruction cache

Miss handling and off chip communication machinery

integrate and debug

Add scratch mode and BIST to caches

Change cache sizes and off-chip bus widths

Anil: perf. counters, debug access and verification

Add perf counters

Read and write PRF via debug bus

Read AMT via debug bus

Verify perf counter read and reset

Verify debug access to PRF and AMT

Post synthesis verification of debug features

Verify read/write access to caches via debug bus

Rangeen: physical design

Modify H3 flow to suit AnyCore requirements

physical design (floorplan, P&R, DRC, LVS)

missed tapeout (May 23, 2014): couldn't close on timing - design too dense ј
tapeout (August 22, 2014) ј

Vinesh: scan chain verification - post layout

Script to generate bit sequence from executable

Add scan support in testbench

Verify basic scan functionality

Timeline - Post Tapeout

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr
Rangeen/Anil: packaging

Package bonding diagram

Socket selection: dictates lead trim

Packaging specifics : lead trim, downbond, fill

Packaging validation after receiving packaged parts

Anil: PCB design

PCB planning and knowledge transfer

Socket footprint creation - consult with PCB manufacturer for design rule

Rev 1A- minimum required components and headers

Rev 1B- debug features, silk screen markings, headers, power measurement

Design review and detailed connectivity check with FPGA and headers

submit final PCB design to Better Boards (April 1) ј
test bare board at Better Boards (April 7) ј

pick up assembled boards from Better Boards (April 8) ј
Rangeen/Anil/Elliott: chip bring-up

insert chip in socket, check Vdd/V+/Gnd, attach to FPGA, BIST success! (April 9) ј

2013 2014 2015

2013 2014 2015



 
Table 7.  Physical design data. 

Technology IBM 8RF (130nm) 
Dimensions 5 mm x 5 mm 
Area 25 mm2 
Pads 
(signal, power) 

100 
(79, 21) 

Transistors 3.4 million 
Cells 1.5 million 
Nets 7.6 million 

 
 

 
Figure 7.  Layout of AnyCore prototype. 

 



 
Figure 8.  Floorplan of AnyCore prototype. 

 

 
Figure 9.  AnyCore package inserted into socket which is assembled on a 4-layer PCB.  Underside of PCB has the FMC LPC 
connector for attaching the PCB as a mezzanine card to the Xilinx ML605 FPGA board. The narrow board width is the same 
as the LPC connector, so it can be attached to arbitrary Xilinx boards (such as Zynq boards). 
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