Future State-of-the-Art Electrical Interconnect

Byungsub Kim* and Vladimir Stojanović

Integrated Systems Group Massachusetts Institute of Technology *Currently with Intel Corporation

Many-core processor era

Tilera 64 core processor

 \rightarrow 1000 cores in the future ?

Global interconnects for latency

- Increasing number of cores \rightarrow latency issue.
- Global NoC interconnects are attractive.

Nanophotonic on-chip interconnect

- Batten et. al., Micro2009
 Large bandwidth with small energy cost per bit over long distance
- Extra cost
 - CMOS compatible fabrication, extra area, energy overhead.
- We are keep improving ...

The winning interconnects?

- Nanophotonics v.s. electrical repeater
- Compare bandwidth and power consumption.

The winning interconnects?

Outline

- □ Fair comparison metrics.
- Trade-off of repeated interconnects.
- Trade-off of equalized interconnects.
- Status of equalized electrical interconnects based on silicon measurement.

Fair interconnect metrics?

- For a given target distance
- Data rate density = (Data rate)/ (cross-sectional width)
- Energy per bit
- Latency

In general, we cannot normalize these metrics by length.

Trade-off: repeated interconnects

Repeater trade-off: three dimensional surface.

Wires and circuits are jointly optimized.

Trade off: repeated interconnects

- Same energy per bit: same capacitance
- Larger data rate density : Tsb < Tsa</p>
- Larger latency : Tdb > Tda

Trade-off: repeated interconnects

Repeater trade-off: three dimensional surface.

Wires and circuits are jointly optimized.

Equalized Interconnects

Potentially lower power and higher data rate than repeaters.

Evolution of equalized interconnects

Review: equalization in frequency domain

Review: equalization in time domain

Trade-off: equalized interconnect

- Rx can sense small voltage ~ 100mV.
- Tx swing is adjusted for target eye size (constant).
- Tx swing is proportional to attenuation.
- By rule of thumb, energy per bit cost $\mu e^{l\sqrt{2pfRC}}$

Review: power consumption of equalization

Power overhead required

- New topologies greatly reduced power overhead.
 - Eg.) Kim ISSCC2009, Mensink ISSCC2007, …

Trade off: equalized interconnect

Equalized and unequalized pulses corresponding for

- For a given data rate density tareget, latency is fixed.
- The channel determines equalized Tx and Rx waveforms and the proper sampling time T_d (latency).

Trade-off: equalized interconnects

 Trade-off curve of equalized interconnect is 3dimensional line.

The winning interconnect

- Depends on application requirements.
- In general,
 - Rpt. wins in short distance (<5mm) or long distance applications (>10mm).
 - Eq. wins in medium distance (5mm-10mm).

Current status: equalized interconnects

- 2-3Gb/s/um with 400fJ/b-600fJ/b over 10mm in 90nm CMOS ASIC technology.
- We can expect further improvement in 22nm high-performance processor technology.

Conclusion

- To set the right direction of nanophotonics, we must compare them to the winning electrical interconnects, either repeated or equalized.
- Fair comparison metrics
 - data rate density, energy per bit, and latency.
- A repeated interconnect trade off is a 3-dimensional surface.
 - latency $\leftarrow \rightarrow$ data rate density
- Equalized interconnects provide better energy efficiency for the same performance in many situations than repeated ones.
- There is no absolute winner.
 - In general, an equalized interconnect is better for 5-10mm distance.

