Exploring Benefits and Designs of Optically Connected Disintegrated Processor Architecture

Yan Pan, Yigit Demir, Nikos Hardavellas, John Kim[†], Gokhan Memik

EECS Department
Northwestern University
Evanston, IL. USA

[†] CS Department KAIST Daejeon, Korea

Motivation

- OCDP Architecture
- Power Comparison
- Conclusion
- Transistor density grows exponentially
- But, processors are physically constrained
 - Low yield, bandwidth wall, power wall
 - Dark silicon: we can build dense devices we cannot afford to power
- Optically-Connected Disintegrated Processor (OCDP)
 - Divide (impractical) monolithic processor into chiplets
 - Improves yield
 - Breaks the bandwidth wall
 - Breaks the power wall
 - Spread out chiplets, cheaper cooling

Motivation

- OCDP Architecture
- Power Comparison
- Conclusion

- Advantage of nanophotonics
 - Latency
 - Bandwidth density
- Using nanophotonics for inter-chip interconnect
 - Reduced memory latency
 - Increased off-chip bandwidth
 - Increased total chip area
 - Increased power budget
- Analytical model* for performance estimation

* N. Hardavellas et al., Tech Report NWU-EECS-10-05, Mar. 2010.

Memory Latency

- OCDP Architecture
- Power Comparison
- Conclusion

Off-chip Bandwidth

- OCDP Architecture
- Power Comparison
- Conclusion

Scaling Power, Chip Area

Motivation

- OCDP Architecture
- Power Comparison
- Conclusion

Motivation

- OCDP Architecture
- Power Comparison
- Conclusion

- Performance impact
 - Reduced memory latency → minimal
 - Improved off-chip bandwidth → small
 - Total chip area → small
 - Power budget → big
- Power budget scalability is critical
 - Spread out chiplets
 - Cheaper cooling
- Optically-Connected Disintegrated Processor (OCDP)

Off-chip Optical Channels

- OCDP Architecture
- Power Comparison
- Conclusion

Material	Optical Loss	Propagation Speed	Pitch (density)
Silicon Waveguide	0.3 dB/cm*	0.286c	20um
Optic Fiber	0.2 dB/km	0.676c	250um

- Optical fiber is low-loss, high speed
 - Enables further spreading out chiplets
 - BW density was a challenge

Dense Off-chip Coupling

- Motivation
- OCDP Architecture
- Power Comparison
- Conclusion

- ▶ Dense optical fiber array [Lee et al., OSA/OFC/NFOEC 2010]
- <1dB loss, 8 Tbps/mm demonstrated</p>

OCDP Design Considerations

- OCDP Architecture
- **Power Comparison**
- Conclusion
- Inter-chiplet optical channel technology
 - Optic fiber for low loss
- Inter-chiplet optical channel organization
 - Point-to-point [Koka et al., ISCA 2010]
 - Minimize waveguide and coupler loss
- On-chip topology

Nikos Hardavellas

- Scalable chiplet size
- On-chip / off-chip bandwidth interfacing
 - Distributed BW, seamless integration

OCDP Architecture

- Motivation
- **OCDP Arch.**
- Power Comparison
- Conclusion

Nikos Hardavellas

UNIVERSITY

Firefly On-chip Topology

- Motivation
- OCDP Arch.
- Power Comparison
- Conclusion

- Firefly on-chip topology [Pan et al., ISCA 2009]
 - Flexible chiplet sizing, optical on-chip communication
- ► FlexiShare optical crossbars [Pan et al., HPCA 2010]
 - Flexible bandwidth provisioning
 - Light-weight optical arbitration needed, proposed

Extending across chiplets

- Motivation
- OCDP Arch.
- Power Comparison
- Conclusion

- Distributed bandwidth across chiplets
- Flexible inter-chiplet bandwidth provisioning
- Minimal number of couplers
- Seamless on-chip/off-chip interfacing

Technology Assumptions

- Motivation
- OCDP Architecture
- Power Eval.
- Conclusion

Parameter	Loss		Parameter	Value
Coupler	1	dB	Detector Sensitivity	0.01 mW
Splitters	1	dB	DWDM	16 λ
Non-linear	1	dB	fiber coupler loss	0.1
Modulator Insertion	0.1	dB	fiber loss	2.00E-06 dB/cm
Waveguide	0.3	dB/cm	ring heating power	40 uW/ring
Ring Through	0.001	dB	Modulation Power	80 fJ/bit
Filter Drop	1.5	dB	Demodulation Power	40 fJ/bit
PhotoDetector	0.1	dB		

WINDS 2010 (in conj. With MICRO 43)

Moderate DWDM (16-way)

Optical Power (320-core)

- Motivation
- OCDP Architecture
- **Power Eval.**
- Conclusion

- 5-chiplet OCDP vs. single-chip topologies
- Total number of optical channels (wavelengths) held constant.

Per-Core Network Static Power

- Motivation
- OCDP Architecture
- **Power Eval.**
- Conclusion

Total Static Power Per Core (mW)

➤ ~ 30% power reduction compared to the best alternative.

Scaling Up

- Motivation
- OCDP Architecture
- Power Eval.
- Conclusion

Total Optical Loss (dB)

- OCDP limits the total on-chip waveguide length
- Better optical scalability

Scaling Up

- Motivation
- OCDP Architecture
- Power Eval.
- Conclusion

Total Static Power Per Core (mW)

- OCDP shows very good power scalability.
- Single-chip is impractical for 1280-core processor

Conclusion

- Motivation
- OCDP Architecture
- Power Comparison
- Conclusion

- OCDP leverages
 - Low latency / high bandwidth density
 - Low loss optic fibers
- Power scalability is critical
 - Minimize optical loss on the path
- Seamless on-chip / off-chip interfacing
 - Firefly intra-chiplet (distributed off-chiplet BW)
 - Point-to-point (Dragonfly) inter-chiplet
- Performance evaluation needed
- Chiplet composition to be explored

Questions?

THANK YOU!

On-chip Optical Channel

- Motivation
- OCDP Architecture
- Power Comparison
- Conclusion

Silicon photonics with DWDM

