Towards Chip-scale Plasmonic Interconnect

Hassan Wassel*, Mohit Tiwari*, Jonathan Valamehr*, Luke Theogarajan*,
Jennifer Dionne^, Frederic Chong* and Timothy Sherwood*

*Computer Science @ UC Santa Barbara

*Electrical and Computer Engineering @ UC Santa Barbara

^Materials Science and Engineering @ Stanford

Motivation

- Introduction to Plasmonics
- Power Models and Results
- Conclusion

Why Plasmonics?

- Photonics is able to provide
 - ✓ High bandwidth via WDM
 - ✓ Low latency (no latching or buffering)
 - ✓ Distance-independent energy consumption

- However,
 - X Photonic component sizes are limited by the diffraction limit.

Motivation

Diffraction limit

- Introduction to Plasmonics
- Power Models and Results
- Conclusion

- Light cannot be confined in spaces less than $\lambda_0/2n$ where λ_0 is the free-space wavelength and n is the refractive index of the material.
- Micrometer sized components lead to high capacitances which limits bandwidth and increases latency and power consumption (best known is 50 fJ/bit)[2]

Images are taken from [1].

- [1] Gramotnev et al, "Plasmonics beyond the diffraction limit," Nature Photonics, vol. 4, Jan 2010.
- [2] Reed et al, "Silicon optical modulators," Nature Photonics, vol. 4, Jul. 2010.

Length vs. Energy Per Bit

- Motivation
- Introduction to Plasmonics
- Power Models and Results
- Conclusion

Can plasmonics reduce the minimum distance at which photonic links are energy efficient?

Electrical results are obtained using Orion 2.0 for 32 nm (LVT)@ 3 GHz with $V_{dd} = 1 \text{ V}$.

Photonic link is modeled using electrical components parameters from Batten et al [HOTI 2008] and ring modulators [Kirman et al, ASPLOS 2010]

Outline

- Motivation
- Introduction to Plasmonics
- Power Models and Results
 - Conclusion

- Motivation
- Plasmonics
 - Surface Plasmon Polaritons
 - Sources
 - Waveguides
 - Modulators
 - Detectors
 - CMOS Compatibility
- Power Models & Results
- Conclusions

Surface Plasmon Polaritons

- Motivation
- Introduction to Plasmonics
- Power Models and Results
 - Conclusion

Surface plasmon polaritons (SPP) are electromagnetic waves that are coupled to free electron collective oscillations in a metal.

- ✓ Maintains the frequency of photonics at much shorter wavelength
- X Ohmic losses limit the propagation distances

SPP Source

- Motivation
- Introduction to Plasmonics
- Power Models and Results
 - Conclusion

- Electrical excitation
 - Not mature (16 mW for few μm propagation) [1]
- Optical Excitation
 - On-chip
 - Nanolaser has been demonstrated [2]
 - Off-chip laser source
 - CW laser is coupled to plasmonics with coupling losses of 1.1 dB per transition.

[1] Walters et. al, A silicon-based electrical source of surface plasmon polaritons. Nature Materials, 9(1):21–25, December 2009.

[2] M.T. Hill, "Nanophotonics: lasers go beyond diffraction limit.," Nature nanotechnology, vol. 4, Nov. 2009.

Plasmonic Waveguides

- Motivation
- Introduction to Plasmonics
- Power Models and Results
- Conclusion

- Insulator-metal-insulator (IMI or LR-SPP)
 - Few cm range with similar confinement to photonic waveguides [1]
- Metal-insulator-metal (MIM or MDM)
 - For example, 80 μm range is achieved when the core thickness of silver/silica/silver waveguide is 250 nm.[2]

[2] Dionne et al, Blasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization, Physical Review B, vol. 73, 2006.

Passive Devices

- Motivation
 - Introduction to Plasmonics
- Power Models and Results
- Conclusion

Bends are loss-free in MDM plasmonic waveguides [1]

High efficiency coupling from and two photonic waveguides

(1.1 dB per transition [2])

T-splitter and Y-Splitters has been proposed [50% loss].

[1] Veronis et al, "Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides," Applied Physics Letters, vol. 87, 2005.

[2] Delacour et al, Efficient Directional Coupling between Silicon and Copper Plasmonic Nanoslot Waveguides: toward Metal–Oxide–Silicon Nanophotonics, *Nano Letters* 2010 *10* (8)

- Motivation
- Introduction to Plasmonics
- Power Models and Results
- Conclusion

PlasMOStor [1]

optical source optical drain

n-Si oxide plasmonic"

Depletion (V=0)

Accumulation (V>V_{FB})

Compact Modulator[2]

- [1] Dionne et al, PlasMOStor: a metal-oxide-Si field effect plasmonic modulator., Nano letters, vol. 9, Feb. 2009.
- [2] Cai et al., "Compact, high-speed and power-efficient electrooptic plasmonic modulators.," Nano letters, vol. 9, Dec. 2009.

Plasmonic Modulators

- Motivation
- Introduction to Plasmonics
- Power Models and Results
- Conclusion

Modulator	Photonic Ring Modulator [3]	PlasMOStor [1]	Compact Modulator [2]
Energy per bit (fJ)	50	6.8	1
Insertion loss (dB)	3	1.1	3
Modulation depth	12	>10	>3
(dB)			
Length X Width (μm X μm)	1000	2x2	1x0.5
Frequency (GHz)	11	> 40	> 100
Capacitance (fF)	50	14	1
Swing voltage (V)	2	0.7	1

- [1] Dionne et al, PlasMOStor: a metal-oxide-Si field effect plasmonic modulator., Nano letters, vol. 9, Feb. 2009.
- [2] Cai et al., "Compact, high-speed and power-efficient electrooptic plasmonic modulators.," Nano letters, vol. 9, Dec. 2009.
- [3] Dong et al. "Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator," Opt. Express 17(2009).

- Motivation
- Introduction to Plasmonics
- Power Models and Results
- Conclusion

- SPP can be detected using photo-detectors.
- Plasmonics has been used to enhance the efficiency of photodetector [1]
- Plasmonics is being proposed to develop phototransistors, leading to removal of the TIA.

[1] Tang et al. "Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna," *Nature Photonics*, vol. 2, Mar. 2008.

- Motivation
- Introduction to Plasmonics
- Power Models and Results
- Conclusion

- Best plasmonic matels are gold and silver.
 However, aluminum and copper are also good plasmonic materials.
- The dielectric can be silicon, silicon oxide, silicon nitride or air.

Plasmonic Link

- Motivation
- Introduction to Plasmonics
- Power Models and Results
- Conclusion

Plasmonic Link Power Model

- Motivation
- Introduction to Plasmonics
- Power Models and Results
 - Conclusion
- Static power = Segments * f(coupler loss, propagation loss, modulator insertion loss)
- Dynamic power = Segments * activity factor* EPB * Bandwidth
- Coupler loss = 1.1 dB/ transition
- Propagation loss = 0.2 dB/μm

Results

- Motivation
- Introduction to Plasmonics
- Power Models and Results
 - Conclusion

Hybrid Link Power Model

- Motivation
- Introduction to Plasmonics
- Power Models and Results
 - Conclusion

- Static power = f(coupler loss, propagation loss, modulator insertion loss)
- Dynamic power = activity factor * EPB * Bandwidth
- Coupler loss = 1.1 dB/ transition
- Propagation loss = 0.1 dB/mm

WDM Hybrid Link

- Motivation
- Introduction to Plasmonics
- Power Models and Results
- Conclusion

Results

- Motivation
- Introduction to Plasmonics
- Power Models and Results
- Conclusion

Conclusions

- Motivation
- Introduction to Plasmonics
- Power Models and Results
- Conclusion

- Plasmonics cannot be used for wave guiding.
- Plasmonics can improve the viability of onchip photonics, via energy efficient detectors and modulators.
- It provides a potential of reducing the minimum distance at which photonics is more energy efficient than electrical signaling.

Thank you!

